Skip to main content
  • 99 Accesses

Abstract

With the dramatic increase of interest aimed at manipulating and transplanting normal human stem cells for clinical applications and for purging or eradicating leukemic stem cells, there is great need for in vivo assays for normal and leukemic human stem cells. The recent development of methods to transplant human hematopoietic cells into immune-deficient mice provides an important approach to characterize stem cells and to develop animal models for hematopoietic diseases including leukemia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrison SJ, Uchida N, Weissman IL: The biology of hematopoietic stem cells. Annual Review of Cell & Developmental Biology 1995;11:35–71

    Article  CAS  Google Scholar 

  2. Ogawa M: Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844, 1993

    PubMed  CAS  Google Scholar 

  3. Orlic D, Bodine DM: What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up: [editorial]. Blood 84:3991, 1994

    PubMed  CAS  Google Scholar 

  4. Verfaillie CM, Miller WJ, Boylan K, McGlave PB: Selection of benign primitive hematopoietic progenitors in chronic myelogenous leukemia on the basis of HLA-DR antigen expression. Blood 79:1003, 1992

    PubMed  CAS  Google Scholar 

  5. Kohn DB: The current status of gene therapy using hematopoietic stem cells. Current Opinion in Pediatrics 7:56, 1995

    Article  PubMed  CAS  Google Scholar 

  6. Williams DA: Ex vivo expansion of hematopoietic stem and progenitor cells—robbing Peter to pay Paul? [editorial]. Blood 81:3169, 1993

    PubMed  CAS  Google Scholar 

  7. Broxmeyer HE: Cord blood as an alternative source for stem and progenitor cell transplantation. Current Opinion in Pediatrics 7:47, 1995

    Article  PubMed  CAS  Google Scholar 

  8. Dunbar CE, Cottier-Fox M, O’Shaughnessy JA, Doren S, Carter C, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM, et al.: Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85:3048, 1995

    PubMed  CAS  Google Scholar 

  9. Kohn D, Weinberg K, Nolta J, Heiss L, Lenarsky C, Crooks G, Hanley M, Annett G, Brooks J, El-Khoureiy A, Lawrence K, Wells S, Moen R, Bastian J, Williams-Herman D, Elder M, Wara D, Bowen T, Hershfeld M, Mullen C, Blaese R, Parkman R: Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Med. 1:1017, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Kamps MP, Baltimore D: E2A-Pbxi, the t(i;i9) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Molecular & Cellular Biology 13:351, 1993

    CAS  Google Scholar 

  11. Hawley RG, Fong AZ, Lu M, Hawley TS: The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 9:1, 1994

    PubMed  CAS  Google Scholar 

  12. Eaves CJ, Sutherland H J, Udomsakdi C, Lansdorp PM, Szilvassy SJ, Fraser CC, Humphries RK, Barnett MJ, Phillips GL, Eaves AC: The human hematopoietic stem cell in vitro and in vivo [see comments]. Blood Cells 18:301, 1992

    PubMed  CAS  Google Scholar 

  13. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM: A functional comparison of CD34 + CD38-cells in cord blood and bone marrow. Blood 86:3745, 1995

    PubMed  CAS  Google Scholar 

  14. Phillips R: Hematopoietic stem cells: concepts, assays, and controversies. Sem. Immunol. 3:337, 1991

    CAS  Google Scholar 

  15. Kaneshima H, Namikawa R, McCune JM: Human hematolymphoid cells in SCID mice. Curr Opin Immunol 6:327, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Dick JE: Normal and leukemic human stem cells assayed in SCID mice. Sem. Immunol. 8:197, 1996

    Article  CAS  Google Scholar 

  17. Dick J, Lapidot T, Pflumio F: Transplantation of normal and leukemic human bone marrow into immune-deficient mice: Development of animal models for human hematopoiesis. Immunol. Rev. 124:25, 1991

    Article  PubMed  CAS  Google Scholar 

  18. Dick J, Sirard C, Pflumio F, Lapidot T: Murine models of normal and neoplastic human hematopoiesis. Cancer Surveys 15:161, 1992

    PubMed  CAS  Google Scholar 

  19. Nolta JA, Hanley MB, Kohn DB: Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 83:3041, 1994

    PubMed  CAS  Google Scholar 

  20. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE, Bodine DM: Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes. Journal of Experimental Medicine 182:2037, 1995

    Article  PubMed  CAS  Google Scholar 

  21. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE: Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice. Science 255:1137, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Shultz L, Schweitzer P, Christianson S, Gott B, Schweitzer I, Tennent B, McKenna S, Mobraaten L, Rajan T, Greiner D, Leiter E: Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice. J. Immunol. 154:180, 1995

    PubMed  CAS  Google Scholar 

  23. Larochelle A, Vormoor J, Lapidot T, Sher G, Furukawa T, Li Q, Shultz L, Oliveri NF, Stamato-yannopoulos G, Dick JE: Engraftment of immune-deficient mice with primitive hematopoietic cells from b-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. Hum. Mol. Genet. 4:163, 1995

    Article  PubMed  CAS  Google Scholar 

  24. Kollmann T, Kim A, Zhuang X, Hachamovitch M, Goldstein H: Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines. Proc. Natl. Acad. Sci. USA 91:8032, 1994

    Article  PubMed  CAS  Google Scholar 

  25. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE, Dick JE: Immature human cord blood progenitors engraft and proliferate to high levels in immune-deficient SCID mice. Blood 83:2489, 1994

    PubMed  CAS  Google Scholar 

  26. Cashman JD, Lapidot T, Wang JC, Doedens M, Shultz LD, Lansdorp P, Dick JE, Eaves CJ: Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 89:4307, 1997

    PubMed  CAS  Google Scholar 

  27. Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Shultz LD, Keller G: Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/ scid mice. Blood 90:85, 1997

    Google Scholar 

  28. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L: Phenotype and function of human hematopoietic cells engrafting immune-deficient CBi7-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731, 1996

    PubMed  CAS  Google Scholar 

  29. Larochelle A, Vormoor J, Hanenberg H, Wang J, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao X, Kato I, Williams D, Dick J: Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2:1329, 1996

    Article  PubMed  CAS  Google Scholar 

  30. Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE: Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 94:5320, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Conneally E, Cashman J, Petzer A, Eaves C: Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proceedings of the National Academy of Sciences of the United States of America 94:9836, 1997

    Article  PubMed  CAS  Google Scholar 

  32. Hao Q, Thiemann FT, Peterson D, Smogorzewska EM, Crooks GM: Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88:3306, 1996

    PubMed  CAS  Google Scholar 

  33. Krause DS, Fackler MJ, Civin CI, May WS: CD34: structure, biology, and clinical utility [see comments]. Blood 87:1, 1996

    PubMed  CAS  Google Scholar 

  34. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183:1797, 1996

    Article  PubMed  CAS  Google Scholar 

  35. Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242, 1996

    Article  PubMed  CAS  Google Scholar 

  36. Jones RJ, Collector MI, Barber JP, Vala MS, Fackler MJ, May WS, Griffin CA, Hawkins AL, Zehnbauer BA, Hilton J, Colvin OM, Sharkis SJ: Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88:487, 1996

    PubMed  CAS  Google Scholar 

  37. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M: Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 26:353, 1998

    PubMed  CAS  Google Scholar 

  38. Wang JC, Doedens M, Dick JE: Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89:3919, 1997

    PubMed  CAS  Google Scholar 

  39. Gan OI, Murdoch B, Larochelle A, Dick JE: Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90:641, 1997

    PubMed  CAS  Google Scholar 

  40. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE: Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186:619, 1997

    Article  PubMed  CAS  Google Scholar 

  41. Bodine DM, Moritz T, Donahue RE, Luskey BD, Kessler SW, Martin DI, Orkin SH, Nienhuis AW, Williams DA: Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82:1975, 1993

    PubMed  CAS  Google Scholar 

  42. van Beusechem V, Kukler A, Heidt P, Valerio D: Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone marrow cells. Proc. Natl. Acad. Sci. USA 89:7640, 1992

    Article  PubMed  Google Scholar 

  43. Carter RF, Abrams-Ogg AC, Dick JE, Kruth SA, Valli VE, Kamel-Reid S, Dube ID: Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 79:356, 1992

    PubMed  CAS  Google Scholar 

  44. Moritz T, Patel VP, Williams DA: Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93:1451, 1994

    Article  PubMed  CAS  Google Scholar 

  45. Nolta J, Dao M, Wells S, Smogorzewska E, Kohn D: Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune deficient mice. Proc. Natl. Acad. Sci. USA 93:2414, 1996

    Article  PubMed  CAS  Google Scholar 

  46. Hughes PF, Eaves CJ, Hogge DE, Humphries RK: High-efficiency gene transfer to human hematopoietic cells maintained in long-term marrow culture. Blood 74:1915, 1989

    PubMed  CAS  Google Scholar 

  47. Schuening F, Kawahara K, Miller A, To R, Goehle S, Stewart D, Mullally K, Fisher L, Graham T, Applebaum F, Hackman R, Osborne W, Storb R: Retrovirus-mediated gene transduction into long-term repopulating marrow cells of the dog. Blood 78:2568, 1991

    PubMed  CAS  Google Scholar 

  48. Conneally E, Eaves CJ, Humphries RK: Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood 91:3487, 1998

    PubMed  CAS  Google Scholar 

  49. Fialkow P, Singer J, Raskind W, Adamson J, Jacobson R, Bernstein I, Najfeld V, Veith R: Clonal development, stem-cell differentiation, and clinical remission in acute nonlymphocytic leukemia. N. Eng. J. Med. 317:468, 1987

    Article  CAS  Google Scholar 

  50. Grier H, Civin C. “Acute and chronic myeloproliferative disorders and myelodysplasia.” Hematology of infancy and childhood. Nathan and Oski ed. 1993 W.B. Saunders Company. Philadelphia, 1288

    Google Scholar 

  51. Griffin J, Löwenberg B: Clonogenic cells in acute myeloblastic leukemia. Blood 68:1185, 1986

    PubMed  CAS  Google Scholar 

  52. McCulloch E: Stem cells in normal and leukemic hempopoiesis (Henry Stratton Lecture). Blood 62:1, 1983

    PubMed  CAS  Google Scholar 

  53. Löwenberg B, Touw I: Hematopoietic growth factors and their receptors in acute leukemia. Blood 81:281, 1993

    PubMed  Google Scholar 

  54. McCulloch E, Izaguirre C, Chang L, Smith L: Renewal and determination in leukemic blast populations. J. Cell Physiol. Suppl. 1:103, 1982

    Article  CAS  Google Scholar 

  55. Kamel-Reid S, Letarte M, Sirard C, Doedens M, Grunberger T, Fulop G, Freedman MH, Phillips RA, Dick JE: A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 246:1597, 1989

    Article  PubMed  CAS  Google Scholar 

  56. Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T, Lapidot T, Thorner P, Freedman M, Phillips R, Dick J: Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in seid mice. Blood 78:2973, 1991

    PubMed  CAS  Google Scholar 

  57. Uckun FM, Downing JR, Gunther R, Chelstrom LM, Finnegan D, Land VJ, Borowitz MJ, Carroll AJ, Crist WM: Human t(1;19)(q23;p13) pre-B acute lymphoblastic leukemia in mice with severe combined immunodeficiency. Blood 81:3052, 1993

    PubMed  CAS  Google Scholar 

  58. Uckun FM, Sather H, Reaman G, Shuster J, Land V, Trigg M, Gunther R, Chelstrom L, Bleyer A, Gaynon P, et al.: Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia. Blood 85:873, 1995

    PubMed  CAS  Google Scholar 

  59. Gunther R, Chelstrom LM, Tuel-Ahlgren L, Simon J, Myers DE, Uckun FM: Biotherapy for xenografted human central nervous system leukemia in mice with severe combined immunodeficiency using B43 (anti-CDi9)-pokeweed antiviral protein immunotoxin. Blood 85:2537, 1995

    PubMed  CAS  Google Scholar 

  60. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE: Biotherapy of B-cell precursor leukemia by targeting genistein to CDi9-associated tyrosine kinases. Science 267:886, 1995

    Article  PubMed  CAS  Google Scholar 

  61. Clarke MF, Apel IJ, Benedict MA, Eipers PG, Sumantran V, Gonzalez-Garcia M, Doedens M, Fukunaga N, Davidson B, Dick JE, et al.: A recombinant bcl-x s adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc. Natl. Acad. Sci. USA 92:11024, 1995

    Article  PubMed  CAS  Google Scholar 

  62. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri M, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645, 1994

    Article  PubMed  CAS  Google Scholar 

  63. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3:730, 1997

    Article  PubMed  CAS  Google Scholar 

  64. Terpstra W, Prins A, Ploemacher RE, Wognum BW, Wagemaker G, Lowenberg B, Wielenga JJ: Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia. Blood 87:2187, 1996

    PubMed  CAS  Google Scholar 

  65. Haase D, Feuring-Buske M, Konemann S, Fonatsch C, Troff C, Verbeek W, Pekrun A, Hiddemann W, Wormann B: Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. Blood 86:2906, 1995

    PubMed  CAS  Google Scholar 

  66. Wetzler M, Talpaz M, Estrov Z, Kurzrock R: CML: mechanisms of disease initiation and progression. [Review]_. Leukemia & Lymphoma 1:47, 1993

    Article  Google Scholar 

  67. Gale RP, Grosveld G, Canaani E, Goldman JM: Chronic myelogenous leukemia: biology and therapy. Leukemia 7:653, 1993

    PubMed  CAS  Google Scholar 

  68. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves C J, Dick JE: Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87:1539, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dick, J.E. (2000). Normal and Leukemic Human Stem Cells. In: Berdel, W.E., et al. Transplantation in Hematology and Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59592-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59592-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64041-4

  • Online ISBN: 978-3-642-59592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics