Skip to main content

Positive Selection of Hematopoietic Progenitor Cells for Autologous and Allogeneic Transplantation in Pediatric Patients with Solid Tumors and Leukemia

  • Chapter
Transplantation in Hematology and Oncology

Abstract

CD34+ progenitor cells were collected by peripheral blood stem cell pheresis (PBSC) from 7 patients with solid tumors (6 neuroblastomas and 1 rhabdomyosarcoma) and from one healthy, allogeneic donor after mobilization with rhG-CSF. CD34+ cells of 18 PBSCs were further enriched using magnetic bead conjugated QBEND/10 antibodies. Processing was performed using the SuperMacs system as a housemade, closed connection device allowing different washing steps or using the automated CliniMacs system.

Positive selection of CD34+ progenitor cells by SuperMacs resulted in a purity of 97.4 ± 1.8% CD34+ cells (n=13; range 94.2 − 99.4) and a recovery of 65.6 ± 20%. The mean number of selected CD34+ progenitors was 7.4 ± 7.3×106/kg (range 1.3 − 24.0) after purging of autologous 1–2 PBSCs. After positive selection no contaminating neuroblastoma cells were detectable by PCR for tyrosine hydroxylase or by fluorescence microscopy using the murine antidisialoganglioside GD2 antibody. Colony forming assays showed proliferative capability of the progenitor cells in all cases. Moreover no microbiological contamination could be found. FACS analysis of the selected progenitor cells demonstrated a 4.5 − 5.6 log depletion of the CD3+ T cell subsets. Hematopoietic regeneration to reach >0.5 × 109/l leukocytes after reinfusion of the CD34+ cells was 11.2 ± 2.5 days (range 9–14).

Our results present a purging strategy with a modified closed positive selection system, which leads to a high percentage of purity in autologous and allogeneic stem cell transplants, respectively. This strategy may help to increase the clinical outcome in pediatric patients with solid tumors and leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aversa F, Terenzi A, Tabilio A et al (1997) Megadose stem cell transplantats from HLA-haploidentical 3-loci mismatched family donors. ASH:#471

    Google Scholar 

  • Berger M, Kanold J, Raptel C, et al (1997) Feasibilty of a PB CD34+ cell transplantation procedure using standard leukapheresis products in very small children. Bone Marrow Transpl 20:191–198

    Article  CAS  Google Scholar 

  • Brenner MK, Rill DR, Moen RC et al (1993) Gene-marking to trace origin of relapse after autologous bone marrow transplantation. Lancet 341:85–86

    Article  PubMed  CAS  Google Scholar 

  • Brockstein BE, Ross AA, Moss TJ et al (1996) Tumor cell contamination of bone marrow harvest products: clinical consequences in a cohort of advanced-stage breast cancer patients undergoing high dose chemotherapy. J Hematother 5:617–624

    Article  PubMed  CAS  Google Scholar 

  • Brugger W, Bross KJ, Glatt M et al (1994) Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83:636–640

    PubMed  CAS  Google Scholar 

  • Brugger W, Heimbeld S, Berenson R et al (1995) Reconstitution of hematopoiesis after high-dose chemotherapy by autologous cells generated ex vivo. N Engl J Med 333:283–287

    Article  PubMed  CAS  Google Scholar 

  • Cinatl J Jr, Cinatl J, Scholz M et al (1996) Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anti Cancer Drugs 7:766–773

    Article  PubMed  Google Scholar 

  • Cinatl J Jr, Cinatl J, Vogel JU et al (1998) Persistent human Cytomegalovirus infection induces drug resistance and alteration of programmed cell death in human neuroblastoma cells. Cancer Res 58:367–372

    PubMed  CAS  Google Scholar 

  • De Wynter EA, Coutinho LH, Pei X et al. (1995) Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells 13.524–532

    Article  PubMed  Google Scholar 

  • Gillies SD and Wesolowski I (1990) Antigen binding and biological activities of engineered mutant chimeric antibodies with human tumor specifities. Hum Antibodies and Hybridomas 1:47–54

    CAS  Google Scholar 

  • Handgretinger R, Greil J, Schürmann U et al (1997) Positive selection and transplantation of peripheral CD34+ progenitor cells: feasibility and purging efficacy in pediatric patients with neuroblastoma. J Hematother 6:235–242

    Article  PubMed  CAS  Google Scholar 

  • Handgretinger R, Lang P, Schümm P et al. (1998) Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified magnetic-activated cell sorting. Bone Marrow Transpl 21:987–993

    Article  CAS  Google Scholar 

  • Huntenburg CC, Kunkel LA, Schneidkraut MJ (1998) CD34+ cell engraftment, ex vivo expansion, and malignant cell depletion following immunomagnetic selection. J Hematother 7:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kvalheim G (1996) Purging of autografts: methods and clinical significance. Duodecim 28:167–173

    CAS  Google Scholar 

  • Krüger WH, Gutensohn K, Gruber M et al. (1997) Cancer cell purging and progenitor selection by CD34+ separation. International Society of Blood Transfusion (ISBT) and Deutsche Gesellschaft für Transfusionsmedizin und Immunhämatologie (DGTI) 24:233, C33

    Google Scholar 

  • Lode HN, Handgretinger R, Schuermann U et al (1997) Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT-PCR and anti-ganglioside GD2 immuncytochemistry. Europ J Cancer 12:2024–2030

    Article  Google Scholar 

  • Martin H, Atta J, Zumpe P et al. (1995) Purging of peripheral blood stem cells yields BCR-ABL-negative autografts in patients with BCR-ABL-positive acute lymphoblastic leukemia. Exp Hematol 23:1612–1618

    PubMed  CAS  Google Scholar 

  • Mapara MY, Körner IJ, Hildebrandt M et al. (1997) Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: Comparison of immunocytochemical tumor cell staining and reverse transcriptase polymerase chain reaction. Blood 89:337–344

    PubMed  CAS  Google Scholar 

  • Moos TJ, Cairo M, Santana VM et al (1994) Clonogenicity of circulating neuroblastoma cells: implications regarding peripheral blood stem cell transplantatio. Blood 83:3085–3089

    Google Scholar 

  • McNiece I, Briddell R, Stoney G, et al (1997) Large scale isolation of CD34+ cells using the Amgen Cell selection device results in high levels of purity and recovery. J Hematother 6:5–11

    Article  PubMed  CAS  Google Scholar 

  • Naito H, Kuzumaki N, Uchino J, et al (1991) Detection of tyrosine hydroxylase mRNA and minimal neuroblastoma cells by the reverse transcriptase-polymerase chain reaction. Eur J Cancer 27:671–675

    Article  Google Scholar 

  • Noga SJ, Seber A, Davis JM (1998) CD34 augmentation improves allogeneic T cell-depleted bone marrow engraftment. J Hematother 7:151–157

    Article  PubMed  CAS  Google Scholar 

  • Rill DR, Santana VM, Roberts WM, et al (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorgeneic cells. Blood 84:380–383

    PubMed  CAS  Google Scholar 

  • Somlo G, Sniecinski T, Odom-Maryon T, et al (1997) Effect of CD34+ selection and various schedules of stem cell reinfusion and granulocyte colony-stimulating factor priming on hematopoietic recovery after high dose chemotherapy for breast cancer. Blood 5:1521–1528

    Google Scholar 

  • Sutherland DR, Anderson L, Keeney M et al. (1996) The ISAGE guidelines for CD34+ cell determination by flow cytometry. J Hematother 5:213–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koehl, U. et al. (2000). Positive Selection of Hematopoietic Progenitor Cells for Autologous and Allogeneic Transplantation in Pediatric Patients with Solid Tumors and Leukemia. In: Berdel, W.E., et al. Transplantation in Hematology and Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59592-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59592-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64041-4

  • Online ISBN: 978-3-642-59592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics