Advertisement

Familiäre Tumorerkrankungen

  • J. Decker
  • B. Zabel

Zusammenfassung

Krebs entsteht aus dem Wechselspiel von endogenen (genetischen) und exogenen (Umwelt) Faktoren. Ganz entscheidend sind dabei genetischen Prädispositionen (Keimbahn) und die erworbenen genetischen Störungen (somatischen Mutationen). Beide Faktoren tragen zum molekularen Pathomechanismus der verschiedenen Tumoren in quantitativ und qualitativ unterschiedlicher Weise bei: so mag eine primär erebte Enzymschwäche (z. B. für die DNA-Reparatur oder für die Karzinogeninaktivierung) die Voraussetzung darstellen, den dann tatsächlich karzinogenen Schaden an anderer Stelle des Genoms im Laufe des Lebens, z. B. in Abhängigkeit von der Karzinogenexposition zu erwerben. Das sich heute abzeichnende Bild der geneschen Störungen in einer Tumorzelle wird immer komplexer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aso T, Lane WS, Conaway JW and Conaway RC Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269(1995)1439–1443PubMedCrossRefGoogle Scholar
  2. Bailly M, Bain C, Favrot MC and Ozturk M Somatic mutations of von Hippel-Lindau (VHL) tumor­suppressor gene in European kidney cancers. Int. J. Cancer 63(1995)660–664.PubMedCrossRefGoogle Scholar
  3. Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J Anaplastic Wilms’tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nature Genet 7(1994)91–97.PubMedCrossRefGoogle Scholar
  4. Beckwith JB New developments in the pathology of Wilms’tumor. Cancer Invest 15(1997)153–162.PubMedCrossRefGoogle Scholar
  5. Beckwith JB, Kiviat NB, Bonadio JF Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’tumor. Pediatr Pathol (1990)1–36.Google Scholar
  6. Bernues M, Casadevall C, Miro R, Caballin MR, Villavicencio H, Salvador J, Zamarron A and Egozcue J Cytogenetic characterization of a familial papillary renal cell carcinoma. Cancer Genet Cytogenet 84(1995)123–127.PubMedCrossRefGoogle Scholar
  7. Bjornsson J, Short MP, Kwiatkowski DJ and Henske EP Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am. J. Pathol 149(1996)1201–1208.PubMedGoogle Scholar
  8. Bourneville D Sclereuse tubereuse des circonvolutions cerebrates. Idiote et epilepsie hemiplegique. Arch. Neurol (Paris) 1(1880)81.Google Scholar
  9. Brauch H, Bohm J and Hofler H Hippel-Lindau syndrome and sporadic renal cell carcinomas. Pathogenesis, morphologic spectrum and molecular genetics. Pathologe 16(1995)321–327.PubMedCrossRefGoogle Scholar
  10. Brauch H, Glavac D, Pausch F, Höfler H and Neumann HPH Genotype-Phenotype Correlations in Families with von Hippel-Lindau Disease: Missense Mutation at Codon 169 Correlates with the Development of Pheochromocytoma. Verh. Dtsch. Ges. Path. (1995)511.Google Scholar
  11. Brauch H, Kishida T, Glavac D, Chen F, Pausch F, Höfler H, Latif F, Lerman M, Zbar B, Neumann HPH, Hofler H, Lerman MI and Neumann, HP von Hippel-Lindau (VHL) disease with pheochro­mocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet 95(1995)551–556.PubMedCrossRefGoogle Scholar
  12. Browne G, Jefferson JA, Wright GD, Hughes AE, Doherty CC, Nevin NC and Keogh JA Von Hippel-Lindau disease: an important differential diagnosis of polycystic kidney disease. Nephrol. Dial. Transplant. 12(1997)1132–1136.PubMedCrossRefGoogle Scholar
  13. Cairns P, Tokino K, Eby Y and Sidransky D Localization of tumor suppressor loci on chromosome 9 in primary human renal cell carcinomas. Cancer Res. 55(1995)224–227.PubMedGoogle Scholar
  14. Callen DF, Freemantle CJ, Ringenbergs ML, Baker E, Eyre HJ, Romain D and Haan EA The isochromosome 18p syndrome: confirmation of cytogenetic diagnosis in nine cases by in situ hybridization. Am. J. Hum. Genet. 47(1990)493–498.PubMedGoogle Scholar
  15. Campbell SC and Novick AC Management of local recurrence following radical nephrectomy or partial nephrectomy. Urol Clin. North Am. 21(1994)593–599.PubMedGoogle Scholar
  16. Carbonara C, Longa L, Grosso E, Borrone C, Garre MG, Brisigotti M and Migone N. 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-like activity also for the TSC1 gene. Hum. Mol. Genet. 3(1994)1829–1832.PubMedCrossRefGoogle Scholar
  17. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphee AL, Strong LC and White RL Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305(1983)779–784.PubMedCrossRefGoogle Scholar
  18. Chauveau D, Duvic C, Chretien Y, Paraf F, Droz D, Melki P, Helenon O, Richard S and Grunfeld JP Renal involvement in von Hippel-Lindau disease. Kidney Int. 50(1996)944–951.PubMedCrossRefGoogle Scholar
  19. Chen F, Kishida T, Duh FM, Renbaum P, Orcutt ML, Schmidt L and Zbar B Suppression Of Growth Of Renal Carcinoma Cells By The Van Hippel-Lindau Tumor Suppressor Gene. Cancer Res. 55(1995)4804–4807.PubMedGoogle Scholar
  20. Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M, Gnarra J, Orcutt L, Duh FM, Glenn G, Green J, Hsia YE, Lamiell J, Li H, Wei MH, Schmidt L, Tory K, Kuzmin 1, Stackhouse T, Latif F, Linehan WM, Lerman M, Zbar B, Gnarra JR, Orcutt ML and et al: Germline Mutation in the von Hippel-Lindau Disease Tumor Suppressor Gene: Correlations with Phenotype. Hum Mutat 5(1995)66–75.PubMedCrossRefGoogle Scholar
  21. Choyke PL, Glenn GM, Wagner JP, Lubensky IA, Thakore K, Zbar B, Linehan WM and Walther MM Epididymal cystadenomas in von Hippel-Lindau Syndrome. Urology. 49(1997)926–931.PubMedCrossRefGoogle Scholar
  22. Christenson PJ, Craig JP, Bibro MC and O’Connell P Cysts Containing Renal Cell Carcinoma in von Hippel-Lindau DiseaseJ Urol 128(1982)798–800.Google Scholar
  23. Cook JA, Oliver K, Mueller RF and Sampson JA cross sectional study of renal involvement in tuberous sclerosis. J Med. Genet. 33(1996)480–484.PubMedCrossRefGoogle Scholar
  24. Cridermiller SJ, Reid LH, Higgins MJ, Nowak NJ, Shows TB, Futreal PA, Weissman BE Novel transcribed sequences within the BWS/WT2 region in 11p15.5—tissue-specific expression correlates with cancer type. Genomics 46(1997)355–363.CrossRefGoogle Scholar
  25. Crossey PA, Foster K, Richards FM, Phipps ME, Latif F, Tory K, Jones M, Bentley E, Kumar R, Lerman M, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER, Jones MH and Lerman MI Molecular genetic investigations of the mechanism of tumorigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours. Hum Genet 93(1994)53–58.PubMedCrossRefGoogle Scholar
  26. Crossey PA, Maher ER, Jones MH, Richards FM, Latif F, Phillips ME Lush, M, Foster, K, Tory, K, Green, JS, Oostra, B, Yates, JR, Linehan, WM, Affara, NA, Lerman, M, Zbar, B, Nakamura, Y and Ferguson-Smith, MA Genetic linkage between Von Hippel-Lindau disease and three microsatellite polymorphisms refines the localisation of the VHL locus. Hum Mol Genet 2,3(1993)279–282.CrossRefGoogle Scholar
  27. Crossey PA, Richards FM, Foster K, Green JS, Prowse A, Latif F, Lerman M, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER, Lerman MI, Ferguson Smith MA and et al: Identification of intragenic mutations in the Von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet 3,8(1994)1303–1308.CrossRefGoogle Scholar
  28. Davies DR, Norman AM, Whitehouse RW and Evans DG Non-expression of von Hippel-Lindau phenotype in an obligate gene carrier. Clin. Genet. 45(1994)104–106.PubMedCrossRefGoogle Scholar
  29. Decker HJ, Neumann HP, Walter TA and Sandberg AA. 3p involvement in a renal cell carcinoma in von Hippel-Lindau syndrome. Region of tumor breakpoint clustering on 3p. Cancer Genet Cytogenet 33(1988)59–65.PubMedCrossRefGoogle Scholar
  30. Decker HJ, Gemmill RM, Neumann HP, Walter TA and Sandberg AA Loss of heterozygosity on 3p in a renal cell carcinoma in von Hippel-Lindau syndrome. Cancer Genet Cytogenet 39(1989)289–293.PubMedCrossRefGoogle Scholar
  31. Decker HJ, Klauck SM, Lawrence JB, McNeil J, Smith D, Gemmill RM, Sandberg AA, Neumann HH, Simon B, Green J and Seizinger BR Cytogenetic and fluorescence in situ hybridization studies on sporadic and hereditary tumors associated with von Hippel-Lindau syndrome (VHL). Cancer Genet Cytogenet 77(1994)1–13.PubMedCrossRefGoogle Scholar
  32. Decker HJ, Neuhaus C, Jauch A, Speicher M, Ried T, Bujard M, Branch H, Storkel S, Stockle M, Seliger B and Huber C Detection of a germline mutation and somatic homozygous loss of the von HippelLindau tumor- suppressor gene in a family with a de novo mutation. A combined genetic study, including cytogenetics, PCR/SSCP, FISH, and CGH. Hum. Genet. 97(1996)770–776.PubMedCrossRefGoogle Scholar
  33. Decker HJ, Neuhaus C, Störkel S, Brauch H, Speicher M, Seliger B, Stöckle M and Huber C Genetische Grundlagen und Konsequenzen für die Tumordiagnostik und genetische Beratung beim von Hippe-Lindau Syndrom. In Lehnert H, Kopf D and Hensen J (Eds.), Endokrine Tumoren. Prognostische Parameter, rationelle Diagnostik und Therapie. (1996)173–179.Google Scholar
  34. Decker HJ, Weidt EJ Brieger J The von Hippel-Lindau tumor suppressor gene. A rare and intriguing disease opening new insight into basic mechanisms of carcinogenesis. Cancer Genet Cytogenet 93(1997)74–83PubMedCrossRefGoogle Scholar
  35. Decker HJ and Stökel S Moleku;argenetischen Diagnostik und Histopathologie epithelialer Nierentumoren. Onkologe 4(1998)214–220CrossRefGoogle Scholar
  36. Duan DR, Humprey JS, Chen DY, Weng Y, Sukegawa J, Lee S, Gnarra JR, Linehan WM and Klausner RD Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl. Acad Sci. U. S. A 92(1995a)6459–6463.PubMedCrossRefGoogle Scholar
  37. Duan DR, Pause A, Burgess WM, Aso T, Chen DYT, Garret KP, Conaway JW, Linehan WN and Klausner RD Inhibition Of Transcription Elongation By The VHL Tumor Suppressor Pro­tein. Science 269(1995b)1402–1406.PubMedCrossRefGoogle Scholar
  38. Eng C, Crossey PA, Mulligan LM, Healy CS and Houghton DC Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J. Clin. Genet. (1995)934–937.Google Scholar
  39. European Chromosome 16 Tuberous Sclerosis Consortium: Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75(1993)1305–1315.CrossRefGoogle Scholar
  40. Foster K, Prowse A, van den Berg A, Fleming S, Hulsbeek MM, Crossey PA, Richards FM, Cairns P, Affara NA, Ferguson-Smith MA, Buys CHCM, Maher ER, Ferguson Smith MA and et al: Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 3(12)(1994)2169–2173.PubMedCrossRefGoogle Scholar
  41. Gilcrease MZ, Schmidt L, Zbar B, Truong L, Rutledge M and Wheeler TM Somatic Von Hippel Lindau Mutation In Clear Cell Papillary Cystadenoma Of The Epididymis. Human Pathology 26(1995)1341–1346.PubMedCrossRefGoogle Scholar
  42. Glavac D, Neumann HPH, Wittke C, Jaenig H, Masek O, Streicher T, Pausch F, Engelhardt D, Plate KH,Höfler H, Chen F, Zbar B, Brauch H, Neumann HP and Hofler H Mutations in the VHL Tumor Suppressor Gene and associated lesions in Families with von Hippel-Lindau Disease from Central Europe. Hum Genet 98,3(1996)271–280.PubMedCrossRefGoogle Scholar
  43. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM,. et al: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet 7(1994)85–90.PubMedCrossRefGoogle Scholar
  44. Gnarra JR, Lerman MI, Zbar B and Linehan WM Genetics of renal-cell carcinoma and evidence for a critical role for von Hippel-Lindau in renal tumorigenesis. Semin. Oncol. 22(1995)3–8.PubMedGoogle Scholar
  45. Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert Buck MR, Westphal H, Klausner RD and Linehan WM Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc. Natl. Acad. Sci. USA 94(1997)9102–9107.PubMedCrossRefGoogle Scholar
  46. Green AJ, Smith M and Yates JR Loss of heterozygosity on chromosome 16p 13.3 in hamartomas from tuberous sclerosis patients. Nat. Genet. 6(1994)193–196.PubMedCrossRefGoogle Scholar
  47. Green DM. Pediatric oncology update—Wilms’tumor. Europ J Cancer 33(1997)409–418.CrossRefGoogle Scholar
  48. Grundy PE, Telzerow PE, Breslow N, Moksness J, Huff V, Paterson MC Loss of heterozygosity for chromosomes 16q and 1p in Wilms’tumors predict an adverse outcome. Cancer Res 54(1994)2331–2333.PubMedGoogle Scholar
  49. Harms D, Schmidt D Tumoren des Kindeslters. In: Pathologie. Remmle W (Hrsg. ) Springer-Verlag Berlin, Heidelberg New York (1997) 501–550.CrossRefGoogle Scholar
  50. Hastie ND The genetics of Wilms’tumor—a case of disrupted development. Annu Rev Genet 28 (1994) 523–558.PubMedCrossRefGoogle Scholar
  51. Henske EP, Neumann HP, Scheithauer BW, Herbst EW, Short MP and Kwiatkowski DJ Loss of heterozygosity in the tuberous sclerosis (TSC2)region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal renal angiomyolipomas. Genes Chromosomes. Cancer 13 (1995) 295–298.Google Scholar
  52. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al. and et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl. Acad Sci. U. S. A 91 (1994) 9700–9704.PubMedCrossRefGoogle Scholar
  53. Van Heyningen V, Bickmore WA, Seawright A, Flecher JM, MauleJ, Fekete G, Gessler M, Bruns GA, Huerre-Jeanpierre C, Junien C Role for the Wilms’tumor gene in genital development? Proc Natl Acad Sci USA 87 (1990) 5383–5386.PubMedCrossRefGoogle Scholar
  54. Iliopoulos O, Kibel A, Gray S and Kaelin WG Jr Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med 1 (1995) 822–826.PubMedCrossRefGoogle Scholar
  55. Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr and Goldberg MA Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl. Acad Sci. U. S. A 93 (1996) 10595–10599.PubMedCrossRefGoogle Scholar
  56. Janssen LA, Sandkyul LA, Merkens EC, Maat Kievit JA, Sampson JR, Fleury P, Hennekam RC, Grosveld GC, Lindhout D and Halley DJ Genetic heterogeneity in tuberous sclerosis. Genomics 8 (1990) 237–242.PubMedCrossRefGoogle Scholar
  57. Jones AC, Daniells CE,Snell RG, Tachataki M, Idziaszczyk S. AUCH, Krawczak M, Sampson JR and Cheadle JP Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum. Mol. Genet. 6 (1997) 2155–2161.PubMedCrossRefGoogle Scholar
  58. Jones KL Smith’s Recognizable Patterns of Human Malformation. Saunders, Philadelphia, 1997.Google Scholar
  59. Junien C, Henry I Genetics of Wilms’tumor: a blend of aberrant development and genomic imprinting. Kidney Int 46 (1994) 1264–1279.PubMedCrossRefGoogle Scholar
  60. Kandt RS, Pericak Vance MA, Hung WY, Gardner RJ, Crossen PE, Nellist MD, Speer MC and Roses AD Linkage studies in tuberous sclerosis. Chromosome 9?, 11?, or maybe 14! Ann. N. Y. Acad. Sci. 615 (1991)284–297.PubMedCrossRefGoogle Scholar
  61. Kanno H, Kondo K, Ito S, Yamamoto I, Fujii S, Torigoe S, Sakai N, Hosaka M, Shuin T and Yao M Somatic mutations of the von Hippel-Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res. 54 (1994) 4845–4847.PubMedGoogle Scholar
  62. Kibel A, Iliopoulos O, DeCaprio JA and Kaelin WG Binding of the von Hippel-Lindau Tumor Suppressor Protein to elongin B and C. Science 269 (1995) 1444–1446.PubMedCrossRefGoogle Scholar
  63. Kinzler KW and Vogelstein B Lessons from hereditary colorectal cancer. Cell 87 (1996) 159–170.PubMedCrossRefGoogle Scholar
  64. Kishida T, Stackhouse TM, Chen F, Lerman MI and Zbar B Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations. Cancer Res. 55 (1995) 4544–4548.PubMedGoogle Scholar
  65. Kishida T, Yao M, Chen F, Orcutt ML, Lerman MI and Zbar B A novel donor splice site mutation associated with two mRNAs in von Hippel-Lindau disease. Hum Mol Genet 3,7 (1994) 1191–1192.PubMedCrossRefGoogle Scholar
  66. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, Gessler M Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WTI +/-KTS splice isoforms. Hum Molec Genet 7 (1998) 709–717.PubMedCrossRefGoogle Scholar
  67. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc. Nad. Acad. Sci. USA 68 (1971) 820–823.CrossRefGoogle Scholar
  68. Knudson AG, Strong LC. Mutation and cancer: a model for Wilms’tumor of the kidney. J Natl Cancer Inst 48 (1972) 313–324.PubMedGoogle Scholar
  69. Kobayashi T, Hirayama Y, Kobayashi E, Kubo Y and Hino, OA gene insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer [published erratum appears in Nat Genet 1995 Feb;9(2):218]. Nat. Genet 9 (1995) 70–74.PubMedCrossRefGoogle Scholar
  70. Kovacs G, Fuzesi L, Emanual A and Kung HF Cytogenetics of papillary renal cell tumors. Genes Chrom Cancer 3 (1991) 249–255.PubMedCrossRefGoogle Scholar
  71. Kovacs G and Kung HF Nonhomologous chromatid exchange in hereditary and sporadic renal cell carinomas. Proc. Natl. Acad. Sci. USA 88 (1991) 194–198.PubMedCrossRefGoogle Scholar
  72. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT1 is required for early kidney development. Cell 74 (1993) 679–691.PubMedCrossRefGoogle Scholar
  73. Kumar A, Wolpert C, Kandt RS, Segal J, Pufky J, Roses AD, Pericak Vance MA and Gilbert JR A de novo frame-shift mutation in the tuberin gene. Hum. Mol. Genet. 4 (1995) 1471–1472.PubMedCrossRefGoogle Scholar
  74. Lamiell JM, Salazar FG and Hsia,YE von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore.) 68 (1989) 1–29.Google Scholar
  75. Latif F, Tory K, Gnarra J, Masahiro Y, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, Schmidt L, Zhou F, Li H, Wei MH, Chen F, Glenn G, Choyke P, Walther MM, Weng Y, Duan DSR, Dean M, Glavac D, Richards FM, Crossey PA, Ferguson-Smith MA, Paslier DL, Chumakov I, Cohen D, Chinault C, Maher E, Linehan WM, Zbar B and Lerman MI Identification of the von Hippel-Lindau Disease Tumor Suppressor Gene. Science 260 (1993) 1317–1320.PubMedCrossRefGoogle Scholar
  76. Lee S, Chen DYT, Humphrey JS and Klausner RD Nuclear/cytoplasmic localization of the von Hippel­Lindau tumor suppressor gene product is determined by cell density. Proc. Natl. Acad. Sci. USA 93 (1996)1770–1775.PubMedCrossRefGoogle Scholar
  77. Lee MP, Hu RJ, Johnson LA, Feinberg AP Human KVLQT1 Gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nature Genet 15 (1997) 181–185.PubMedCrossRefGoogle Scholar
  78. Little M, Holmes G, Bickmore W, van Heyningen V, Hastie N, Wainwright B DNA binding capacity of the WT1 protein is abolished by Denys-brash syndrome WT1 point mutations. Hum Molec Genet 4 (1995) 351–358.PubMedCrossRefGoogle Scholar
  79. Little M, Wells CA clinicasl overview of WT1 gene mutations. Hum Mutation 9 (1997) 209–225.CrossRefGoogle Scholar
  80. Löbbert RW, Klemm G, Grüttner H-P, Harms D, Winterpacht A, Zabel BU Novel WT1 mutation, 11p LOH, and t(7;12)(p22;q22) chromosomal translocation identified in a Wilms’tumor case. Genes Chromosomes & Cancer 21 (1998) 347–350.CrossRefGoogle Scholar
  81. Los M, Jansen GH, Kaelin WG, Lips CJM, Blijham GH and Voest EE Expression pattern of the von Hippel_lindau Protein in human tissues. Lab Invest. 75 (1996) 231–238.PubMedGoogle Scholar
  82. Maddock IR, Moran A, Maher ER, Teare MD, Norman A, Payne SJ, Whitehouse R, Dodd C, Lavin M, Hartley N, Super M and Evans DGR A Genetic Register For Von Hippel-Lindau Disease. J.. Med. Genet. 33 (1996) 120–127.PubMedCrossRefGoogle Scholar
  83. Maher ER, Yates JRW, Harries R, Benjamin C, Harris R, Moore AT and Ferguson-Smith MA Clinical Features and Natural History of von Hippel-Lindau Disease. Q. J. Med. 77,203 (1990) 1151–1163.PubMedGoogle Scholar
  84. Maher ER, Bentley E, Yates JR, Latif F, Lerman M, Zbar B, Affara NA and Ferguson-Smith MA Mapping of the von Hippel-Lindau disease locus to a small region of chromosome 3p by genetic linkage analysis. Genomics 10 (1991) 957–960.PubMedCrossRefGoogle Scholar
  85. Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, Sampson J, Williams A, Ferguson-Smith MA and Morton N Von Hippel-Lindau disease: a genetic study. J. Med. Genet. 28 (1991) 443–447.PubMedCrossRefGoogle Scholar
  86. Maher ER Von Hippel-Lindau disease. In Hodgson SV and Maher ER (Eds. ), A practical guide to human cancer genetics. Cambridge University Press, Cambridge (1993) 157–162.Google Scholar
  87. Maher ER Van Hippel-Lindau disease. Eur. J. Cancer 30 A (1994) 1987–1990.CrossRefGoogle Scholar
  88. Maher ER Inherited renal cell carcinoma. Br. J. Urol 78 (1996) 542–545.PubMedGoogle Scholar
  89. Maher ER and Kaelin WG Jr von Hippel-Lindau disease. Medicine Baltimore. 76 (1997) 381–391.PubMedCrossRefGoogle Scholar
  90. Maheshwar MM, Cheadle JP, Jones AC, Myring J, Fryer AE, Harris PC and Sampson JR The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet. 6 (1997) 1991–1996.PubMedCrossRefGoogle Scholar
  91. McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, Virshup D, Huff V Linkage of familial Wilms’tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 58 (1998) 1387–1390.PubMedGoogle Scholar
  92. Melmon KL and Rosen SW Lindau’s Disease. Review of the Literature and Study of a Large Kindred. Am. J. Med. 36 (1964) 595–617.PubMedCrossRefGoogle Scholar
  93. Mertens F, Johansson B, Höglund M, Mitelman F Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57 (1997) 2765–2780.PubMedGoogle Scholar
  94. Moffett P, Bruening W, Nakagama H, Bardeesy N, Housman DE, Pelletier J Antagonism of WT1 activity by protein self-association. Proc Natl Acad Sci USA 92 (1995) 11105–11109.PubMedCrossRefGoogle Scholar
  95. Neumann HP Basic criteria for clinical diagnosis and genetic counselling in von Hippel-Lindau syndrome. Vasa 16 (1987) 220–226.PubMedGoogle Scholar
  96. Neumann HP and Wiestler OD Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet 337 (1991) 1052–1054.PubMedCrossRefGoogle Scholar
  97. Neumann HP, Bergen DP and Sigmund G Pheochromocytomas, Multiple Endocrine Neoplasia Type 2, And Von Hippel-Lindau Disease. N. Engl. J. Med. (1993) 1531–1538.Google Scholar
  98. Neumann HP, Eng C, Mulligan LM, Glavac D, Zauner I, Ponder BA, Crossey PA, Maher ER and Brauch H Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. JAMA 274 (1995)1149–1151.PubMedCrossRefGoogle Scholar
  99. Neumann HP, Lips CJ, Hsia YE and Zbar B Von Hippel-Lindau syndrome. Brain Pathol 5 (1995) 181–193.PubMedCrossRefGoogle Scholar
  100. Nicol D, Hii SI, Walsh M, Teh B, Thompson L, Kennett C and Gotley D vascular endothelial growth factor expression is increased in renal cell carcinoma. J. Urol. 157 (1997)1482–1486.PubMedCrossRefGoogle Scholar
  101. Northrup H, Kwiatkowski DJ, Roach ES, Dobyns WB, Lewis RA, Herman GE, Rodriguez E Jr, Daiger SP and Blanton SH Evidence for genetic heterogeneity in tuberous sclerosis: one locus on chromosome 9 and at least one locus elsewhere. Am. J Hum. Genet. 51 (1992) 709–720.PubMedGoogle Scholar
  102. Okeefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, Anyaneyeboa K, Tycko B Coding mutations in p57(KIP2) are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms’tumors. Am J Hum Genet 61 (1997) 295–303.CrossRefGoogle Scholar
  103. Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ, Haber DA Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’tumour. Nature Genet 5 (1993) 363–367.PubMedCrossRefGoogle Scholar
  104. Pause A, Lee S, Worrell RA, Chen DYT, Burgess WH, Linehan WM and Klausner RD The von HippelLindau tumor-suppressor gene product forms a stable complex with human cul-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. 94 (1997) 2156–2161.PubMedCrossRefGoogle Scholar
  105. Piala G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D Mutations in GPC3, a glypican gene, cause the Sampson-Golabi-Behmel overgrowth syndrome. Nature Genet 12 (1996) 241–247.CrossRefGoogle Scholar
  106. Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones K, Stratton MR, Narod S. AUCH Evidence for a familial Wilms’tumor gene (FWT1) on chromosome 17ql2-q2l. Nature Genet 13 (1996) 461–463.PubMedCrossRefGoogle Scholar
  107. Reddy JC, Licht J. D The WT1 Wilms’tumor suppressor gene: how much do we really know? Biochim Biophys Acta 1287 (1996) 1–28.PubMedGoogle Scholar
  108. Reik W, Maher ER Imprinting in clusters—lessons from Beckwith-Wiedemann syndrome. Tends Genet 13 (1997) 330–334.CrossRefGoogle Scholar
  109. Richard C, Zabel B Chromosome 11 genes and those associated with diseases. Cytogenet Cell Genet 74(1996)25–36.CrossRefGoogle Scholar
  110. Richards FM, Crossey PA, Phipps ME, Foster K, Latif F, Evans GA, Sampson J, Lerman M, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER, Evans G, Lerman MI and et al: Detailed mapping of germline deletions of the van Hippel-Lindau disease tumour suppressor gene. Hum Mot Genet 3 (1994) 595–598.CrossRefGoogle Scholar
  111. Richards FM, Payne SJ, Zbar B, Affara NA, Ferguson Smith MA and Maher ER Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet 4 (1995) 2139–2143.PubMedCrossRefGoogle Scholar
  112. Sampson JR The kidney in tuberous sclerosis: manifestations and molecular genetic mechanisms. Nephrol. Dial. Transplant. 11 Suppl 6 (1996) 34–37.PubMedGoogle Scholar
  113. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richards S, Lips CJ, Walther MM, Tsui LC, Geil L, Orcutt ML, Stackhouse T, Lipan J, Slife L, Brauch H, Decker HJ, Niehaus G, Hughson MD, Moch H, Störkel S, Lerman M, Linehan WM an Zbar B Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet 16 (1997) 68–73.PubMedCrossRefGoogle Scholar
  114. Schneider MC Advances in polycystic kidney disease. Mol. Med. Today 2 (1996) 70–75.PubMedCrossRefGoogle Scholar
  115. Schumacher V, Schneider S, Figge A, Wildhardt D, Harms D, Schmidt D, Weirich A, Ludwig R, Royer-Pokora B Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-prominent histology. Proc. Natl. Acad. Sci. USA 94 (1997) 3972–3977.PubMedCrossRefGoogle Scholar
  116. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor Krakauer D and et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332 (1988) 268–269.PubMedCrossRefGoogle Scholar
  117. Seizinger BR, Smith DI, Filling-Katz MR, Neumann H, Green JS, Choyke PL, Anderson KM, Freiman RN, Klauck SM, Whaley J, Decker HJ and et al. Genetic flanking markers refine diagnostic criteria and provide insights into the genetics of Von Hippel Lindau disease. Proc. Natl. Acad. Sci. USA 88 (1991) 2864–2868.PubMedCrossRefGoogle Scholar
  118. Shinohara N, Nonomura K, Harabayashi T, Togashi M, Nagamori S and Koyagani T Nephron sparing surgery for renal cell carcinoma in von Hippel-Lindau disease. J. Urol 154 (1995) 2016–2019.PubMedCrossRefGoogle Scholar
  119. Shuin T, Kondo K, Kaneko S, Sakai N, Yao M, Hosaka M, Kanno H, Ito S and Yamamoto I Results of mutation analyses of von Hippel-Lindau disease gene in Japanese patients: comparison with results in United States and United Kingdom. Hinyokika Kiyo 41 (1995) 703–707.PubMedGoogle Scholar
  120. Shuin T, Kondo K, Torigoe S, Kishida T, Kubota Y, Hosaka M, Nagashima Y, Kitamura H, Latif F, Zbar B, Lerman MI, Yao M and et al: Frequent Somatic Mutations and Loss of Heterozygosity of the von Hippel-Lindau Tumor Suppressor Gene in Primary Human Renal Cell Carcinomas. Cancer Res. 54 (1994) 2852–2855.PubMedGoogle Scholar
  121. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Jassen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Kwiatkowski DJ and et al: Identification of the tuberous sclerosis gene TSCI on chromosome 9q34. Science 277 (1997) 805–808.PubMedCrossRefGoogle Scholar
  122. Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marmé D, Martiny Baron G and Marme, D Reversion of Deregulated Expression of Vascular Endothelial Growth Factor in Human Renal Carcinoma Cells by von Hippel-Lindau Tumor Suppressor Protein. Cancer Res. (1996) 2299–2301.Google Scholar
  123. Solomon D and Schwartz A Renal Pathology in von Hippel-Lindau Disease. Hum Pathol (1996) 1072–1079.Google Scholar
  124. Soucek T, Pusch O, Wienecke R, ReClue JE, and Hengstschlager M Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol. Chem. 272 (1997) 29301–29308.PubMedCrossRefGoogle Scholar
  125. Spencer WF, Novick AC, Montie JE, Streem SB and Levin, HS Surgical treatment of localized renal cell carcinoma in von Hippel-Lindau’s disease. J. Urol. 139 (1988) 507–509.PubMedGoogle Scholar
  126. Stackhouse TM, Lerman M and Zbar B An in vivo analysis of the Hippel-Lindau tumor suppressor protein. Proc. Am. Assoc. Cancer Res. 36(A) (1995) 570.Google Scholar
  127. Steinbach F, Novick AC and Shoskes D Renal transplantation in patients with renal cell carcinoma and von Hippel-Lindau disease. Urology. 44 (1994) 760–763.PubMedCrossRefGoogle Scholar
  128. Steinbach F, Thuroff JW, Stockle M, Furrer A Riedmiller H, Kiewel R and Hohenfellner R Organ-preserving surgery of renal cell carcinoma. The surgical technic, results and complications. Dtsch. Med. Wschr. 116 (1991) 121–127.PubMedCrossRefGoogle Scholar
  129. Sugao H, Takiuchi H, Takatera H, Yokokawa K, Sakurai T and Kobayashi Y Renal oncocytona associated with tuberous sclerosis: report of a case. Hinyokika Kiyo 33 (1987) 1411–1415.PubMedGoogle Scholar
  130. Sun FL, Dean WL, Kelsey G, Allen ND, Reik W Transactivation of IGF2 in a mouse model of BeckwithWiedemann syndrome. Nature 389 (1997) 809–815.PubMedCrossRefGoogle Scholar
  131. Takahashi A, Sasaki H, Kim SJ, Tobisu KI, Kakizoe T, Tsukamoto T, Kumamoto Y, Sugimura T and Terada M Markedly Increased Amounts of Messenger RNAs for Vascular Endothelial Associated Factor and Placenta Growth Factor in Renal Cell Carcinoma Associated Angiogenesis. Cancer Res. 54 (1994) 4233–4237.PubMedGoogle Scholar
  132. Teh BT, Giraud S, Sari NF, Hii SI, Bergerat JP, Larsson C, Limacher JM and Nicol D Familial non-VHL non-papillary clear-cell renal cancer. Lancet 349 (1997) 848–849.PubMedCrossRefGoogle Scholar
  133. Thoenes W, Störkel S and Rumpelt HJ Histopathology and Classification of Renal Cell Tumors (Adenomas,Oncocytomas, and Carcinomas). The Basic Cytological and Histopathological Elements and their Use for Diagnostics. Path. Res. Pract. 181 (1986) 125–143.Google Scholar
  134. Tsuchiya H, Iseda T and Hino O Identification of a Novel Protein (VBP-1) Binding to the von Hippel- Lindau (VHL) Tumor Suppressor Gene Product. Cancer Res. 56 (1996) 2881–2885.PubMedGoogle Scholar
  135. Walther MM, Lubensky IA, Venzon D, Zbar B and Linehan WM Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J. Urol 154 (1995) 2010–2014.PubMedCrossRefGoogle Scholar
  136. Washecka R and Hanna M Malignant renal tumors in tuberous sclerosis. Urology. 37 (1991) 340–343.PubMedCrossRefGoogle Scholar
  137. Weidner N and Folkman J Tumoral Vascularity as a Prognostic Factor in Cancer. In De-Vita V, Hellman S and Rosenberg S. AUCH (Eds. ),Important Advances in Oncology. Lippincott-Raven, Philadelphia, 1996, pp. 167–190.Google Scholar
  138. Weterman MA, Wilbrink M, Janssen I, Janssen HA, van den Berg E, Fisher SE, Craig I and Geurts van Kessel A Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1) (p11;g21) breakpoint. Cytogenet Cell Genet 75 (1996) 2–6.PubMedCrossRefGoogle Scholar
  139. Whaley JM, Naglich J, Gelbert L, Hsia YE, Lamiell JM, Green JS, Collins D, Neumann HP, Laidlaw J, Li FP and et al: Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am. J. Hum Genet 55 (1994) 1092–1102.PubMedGoogle Scholar
  140. Wiener JS, Coppes MJ, Ritchey ML Current concepts in the biology and management of Wilms’tumor. J Urology 159 (1998) 1316–1325.CrossRefGoogle Scholar
  141. Wizigmann Voos S, Breier G, Risau W and Plate KH Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 55 (1995) 1358–1364.PubMedGoogle Scholar
  142. Yao M, Latif F, Orcutt ML, Kuzmin I, Stackhouse T, Zhou FW, Tory K, Duh FM, Richards F, Maher E and et al: von Hippel-Lindau disease: identification of deletion mutations by pulsed-field gel electrophoresis. Hum Genet 92 (1993) 605–614.PubMedCrossRefGoogle Scholar
  143. Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR and Knudson AG Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl. Acad Sci. U. S. A 91(1994)11413–11416.PubMedCrossRefGoogle Scholar
  144. Zbar B, Branch H, Talmadge C and Linehan M Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327 (1987) 721–724.PubMedCrossRefGoogle Scholar
  145. Zbar B, Glenn G, Lubensky I, Choyke P, Walther MM, Magnusson G, Bergerheim US, Pettersson S, Amin M, Hurley K and et al: Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J. Urol 153 (1995) 907–912.PubMedCrossRefGoogle Scholar
  146. Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, Crossey PA, Webster AR, Affara NA, Ferguson Smith MA, Brauch H, Glavac D, Neumann HP, Tisherman S, Mulvihill JJ, Gross DJ, Shuin T, Whaley J, Seizinger B, Kley N, Olschwang S, Boisson C, Richard S, Lips CH, Lerman M and et al: Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat 8 (1996) 348–357.PubMedCrossRefGoogle Scholar
  147. Zbar B and Linehan WM Re: Hereditary papillary renal cell carcinoma: clinical studies in 10 families [letter]. J. Urol 156 (1996)1781.PubMedCrossRefGoogle Scholar
  148. Zbar B, Tory K, Merino M, Schmidt L, Glenn G, Choyke P, Walther MM, Lerman M and Linehan WM Hereditary papillary renal cell carcinoma. J. Urol 151 (1994) 561–566.PubMedGoogle Scholar
  149. Zhang PM, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, Depinho RA, Elledge SJ Altered cell differentiation and proliferation in mice lacking p57(KIP2) indicates role in Beckwith-Wiedemann syndrome.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. Decker
  • B. Zabel

There are no affiliations available

Personalised recommendations