Skip to main content

Cytochrome P450 Monooxygenases and Insecticide Resistance: Lessons from CYP6D1

  • Chapter

Abstract

The cytochrome P450-dependent monooxygenases (monooxygenases) are a vital biochemical system because they metabolize xenobiotics such as drugs, pesticides and plant toxins, and because they regulate the titers of endogenous compounds such as hormones, fatty acids and steroids. Cytochrome P450 (P450) is a hemoprotein which acts as the terminal oxidase in monooxygenase systems, and there are multiple P450 isoforms in eukaryotic species. Monooxygenases are remarkable in that they can oxidize widely diverse substrates and are capable of producing a bewildering array of reactions (Kulkarni and Hodgson 1980; Rendic and Di Carlo 1997; Mansuy 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agosin M (1985) Role of microsomal oxidations in insecticide degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 12. Pergamon Press, New York, pp 647–712

    Google Scholar 

  • Ahmad S (1986) Enzymatic adaptations of herbivorous insects and mites to phytochemicals. J Chem Ecol 12: 533–539

    Article  CAS  Google Scholar 

  • Brattsten LB, Wilkinson CF (1973)Induction of microsomal enzymes in the southern armyworm (Prodenia eridania). Pestic Biochem Physiol 3:393–407

    Article  CAS  Google Scholar 

  • Brattsten LB, Holyoke CW Jr, Leeper JR, Raffa KF (1986) Insecticide resistance: challenge to pest management and basic research. Science 231:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  • Brown AWA (1958) Insecticide resistance in arthropods. World Health Organization, Geneva.

    Google Scholar 

  • Carino FA, Koener JF, Plapp FW Jr, Feyereisen R (1992) Expression of the cytochrome P450 gene CYP6A1 in the housefly, Musca domestica. In: Mullin CA, Scott JG (eds) Molecular mechanisms of insecticide resistance: diversity among insects. ACS Symposium series 505. American Chemical Society, Washington, DC, pp 31–40

    Chapter  Google Scholar 

  • Carino FA, Koener JF, Plapp FW Jr, Feyereisen R (1994) Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a housefly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24:411–418.

    Article  PubMed  CAS  Google Scholar 

  • Chevillon C, Raymond M, Guillemaud T, Lenormand T, Pasteur N (1999) Population genetics of insecticide resistance in the mosquito Culex pipiens. Biol J Linnean Soc 68:147–157.

    Article  Google Scholar 

  • Cohen MB, Feyereisen R (1995) A cluster of cytochrome P450 genes of the CYP6 family in the housefly. DNA Cell Biol 14:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19:317–366.

    PubMed  CAS  Google Scholar 

  • Conney AH (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res 42:4875–4917.

    PubMed  CAS  Google Scholar 

  • Epstein PM, Curti M, Jansson I, Huang C-K, Schenkman JB (1989) Phosphorylation of cytochrome P450: regulation by cytochrome b5. Arch Biochem Biophys 271:424–432.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant RH (1999) Target site mediated insecticide resistance: what questions remain? Insect Biochem Mol Biol 29:397–403.

    Article  CAS  Google Scholar 

  • Field LM, Devonshire AL (1991) Insecticide resistance by gene amplification in Myzus persicae. In: Denholm I, Devonshire A, Holloman DW (eds) Resistance 91. Elsevier, New York, pp 240–250.

    Google Scholar 

  • Georghiou GP (1980) Insecticide resistance and prospects for its management. Resid Rev 76:131–145.

    CAS  Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Georghiou GP, Saito T (eds) (1983) Pest resistance to pesticides. Plenum Press, New York.

    Google Scholar 

  • Gotoh O, Fujii-Kuriyama Y (1989) Evolution, structure, and gene regulation of cytochrome P-450. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 1. Taylor and Francis, New York, pp 195–243.

    Google Scholar 

  • Guengerich FP (1995) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry. Plenum Press, San Francisco, pp 473–535.

    Google Scholar 

  • Guengerich FP (1997) Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chemico-Biol Interact 106:161–182.

    Article  CAS  Google Scholar 

  • Guillemaud T, Lenormand T, Bourguet D, Chevillon C, Pasteur N, Raymond M (1998) Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution 52:443–453.

    Article  Google Scholar 

  • Hatano R, Scott JG (1993) Anti-P450ipr antiserum inhibits the activation of chlorpyrifos to chlorpyrifos-oxon in housefly microsomes. Pestic Biochem Physiol 45:228–233.

    Article  CAS  Google Scholar 

  • Hemingway J, Karunarantne SHPP (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson E (1983) The significance of cytochrome P-450 in insects. Insect Biochem 13:237–246.

    Article  CAS  Google Scholar 

  • Hodgson E (1985) Microsomal mono-oxygenases. In: Kerkut GA, Gilbert LC (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 11. Pergamon Press* Oxford, pp 647–712.

    Google Scholar 

  • Hodgson E, Kulkarni AP (1983) Characterization of cytochrome P-450 in studies of insecticide resistance. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York.

    Google Scholar 

  • Hodgson E, Silver IS, Butler LE, Lawton MP, Levi PE (1991) Metabolism. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology, vol 1. General principles. Academic Press, New York, pp 107–168.

    Google Scholar 

  • Jutsum AR, Heaney SP, Perrin BM, Wege PJ (1998) Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pestic Sci 54:435–446.

    Article  CAS  Google Scholar 

  • Konno T, Hodgson E, Dauterman WC (1989) Studies on methyl parathion resistance in Heliothis virescens. Pestic Biochem Physiol 33:189–199.

    Article  CAS  Google Scholar 

  • Korytko PJ, Quimby FW, Scott JG (2000) Metabolism of phenanthrene by housefly CYP6D1 and dog liver cytochrome P450. J Biochem Molec Toxicol 14:20–25.

    Article  CAS  Google Scholar 

  • Korytko PJ, Scott JG (1998) CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Arch Insect Biochem Physiol 37:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Kotze AC (1993) Cytochrome P450 monooxygenases in larvae of insecticide-susceptible and—resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pestic Biochem Physiol 46:65–72.

    Article  CAS  Google Scholar 

  • Kotze AC, Wallbank BE (1996) Esterase and monooxygenase activities in organophosphate—resistant strains of Oryzaephilus surinamensis (Coleoptera: Cucujidae). J Econ Entomol 89:571–576.

    CAS  Google Scholar 

  • Kulkarni AP, Hodgson E (1980) Metabolism of insecticides by mixed function oxidase systems. Pharmacol Ther 8:379–475.

    Article  PubMed  CAS  Google Scholar 

  • Lee SST, Scott JG (1989) Microsomal cytochrome P450 monooxygenases in the housefly (Musca domestica L): biochemical changes associated with insecticide resistance and phenobarbital induction. Pestic Biochem Physiol 35:1–10.

    Article  CAS  Google Scholar 

  • Lee SST, Scott JG (1992) Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in the housefly, Musca domestica L. Insect Biochem Mol Biol 22:699–711.

    Article  CAS  Google Scholar 

  • Lindberg RLP, Negishi M (1989) Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339:632–634.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Scott JG (1995) Genetics of resistance to pyrethroid insecticides in the housefly, Musca domestica. Pestic Biochem Physiol 52:116–124.

    Article  Google Scholar 

  • Liu N, Scott JG (1996) Genetic analysis of factors controlling elevated cytochrome P450, CYP6D1, cytochrome b5, P450 reductase and monooxygenase activities in LPR houseflies, Musca domestica. Biochem Genet 34:133–148.

    PubMed  CAS  Google Scholar 

  • Liu N, Scott JG (1997a) Inheritance of CYP6D1-mediated pyrethroid resistance in housefly (Diptera: Muscidae). J Econ Entomol 90:1478–1481.

    PubMed  CAS  Google Scholar 

  • Liu N, Scott JG (1997b) Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in houseflies, Musca domestica. Insect Mol Biol 6:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Scott JG (1998) Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in housefly. Insect Biochem Mol Biol 28:531–535.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Tomita T, Scott JG (1995) Allele-specific PCR reveals that the cytochrome P450lpr gene is on chromosome 1 in the housefly, Musca domestica. Experientia 51:164–167.

    Article  PubMed  CAS  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system for liver microsomes. J Biol Chem 243:1331–1332.

    PubMed  CAS  Google Scholar 

  • Mansuy D (1998) The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C 121:5–14.

    PubMed  CAS  Google Scholar 

  • Mouches C, Pasteur N, Berge JB, Hyrien O, Raymond M, De Saint Vincent BR, De Silvestri M, Georghiou GP (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233:778–780.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (1998) http://drnelson.utmem.edu/nelsonhomepage.html.

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42.

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (1986) Executive summary, pesticide resistance strategies and tactics for management. In: National Research Council (ed) Pesticide resistance strategies and tactics for management. National Academy Press, Washington, DC, pp 1–9.

    Google Scholar 

  • Oppenoorth FJ (1985) Biochemistry and genetics of insecticide resistance. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon Press, Oxford, pp 731–774.

    Google Scholar 

  • Peterson JA, Prough RA (1986) Cytochrome P-450 reductase and cytochrome b5 in cytochrome P-450 catalysis. In: Ortiz de Montellano PR (ed) Cytochrome P-450 structure, mechanism, and biochemistry. Plenum Press, New York, 89 pp.

    Google Scholar 

  • Plapp FW Jr (1984) The genetic basis of insecticide resistance in the housefly: evidence that single locus plays a major role in metabolic resistance to insecticides. Pestic Biochem Physiol 22:194–201.

    Article  CAS  Google Scholar 

  • Pompon D (1987) Rabbit liver cytochrome P-450 LM2: roles of substrates, inhibitors and cytochrome b5 in modulating the partition between productive and abortive mechanisms. Biochemistry 26:6429–6435.

    Article  PubMed  CAS  Google Scholar 

  • Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29:413–580.

    Article  PubMed  CAS  Google Scholar 

  • Roush RT, Tabashnik BE (eds) (1990) Pesticide resistance in arthropods. Chapman and Hall, New York.

    Google Scholar 

  • Sawicki RM (1962) Insecticidal activity of pyrethrum extract and its four insecticidal constituents against houseflies. III. Knock-down and recovery of flies treated with pyrethrum extract with and without piperonyl butoxide. J Sci Food Agric 13:283–291.

    CAS  Google Scholar 

  • Scott JG (1991) Insecticide resistance in insects. In: Pimentel D (ed) Handbook of pest management in agriculture, vol 2. CRC Press, Boca Raton, p 663.

    Google Scholar 

  • Scott JG (1996) Inhibitors of CYP6D1 in housefly microsomes. Insect Biochem Mol Biol 26:645–649.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG (1999) Molecular basis of insecticide resistance: cytochromes P450. Insect Biochem Mol Biol 29:757–777.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Georghiou GP (1985) Rapid development of high-level permethrin resistance in a field—collected strain of housefly (Diptera: Muscidae) under laboratory selection. J Econ Entomol 78:316–319.

    PubMed  CAS  Google Scholar 

  • Scott JG, Georghiou GP (1986a) The biochemical genetics of permethrin resistance in the Learn-PyR strain of housefly. Biochem Genet 24:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Georghiou GP (1986b) Mechanisms responsible for high levels of permethrin resistance in the housefly. Pestic Sci 17:195–206.

    Article  CAS  Google Scholar 

  • Scott JG, Lee SST (1993a) Purification and characterization of a cytochrome P-450 from insecticide susceptible and resistant strains of housefly, Musca domestica L. Arch Insect Biochem Physiol 24:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Lee SST (1993b) Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in the insecticide resistant LPR strain of housefly, Musca domestica L. Insect Biochem Mol Biol 23:729–738.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Sridhar P, Liu N (1996) Adult specific expression and induction of cytochrome P450Ipr in house flies. Arch Insect Biochem Physiol 31:313–323.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C 121:147–155.

    PubMed  CAS  Google Scholar 

  • Scott JG, Liu N, Wen Z, Smith FF, Kasai S, Horak CE (1999) House fly cytochrome P450 CYP6D1:5 prime flanking sequences and comparison of alleles. Gene 226:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Foroozesh M, Hopkins NE, Alefantis TG, Alworth WL (2000) Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes and other substituted aromatics. Pestic Biochem Physiol 67:63–71.

    Article  CAS  Google Scholar 

  • Sheppard DC, Joyce JA (1998) Increased susceptibility of pyrethroid-resistant hornflies (Diptera: Muscidae) to chlorfenapyr. J Econ Entomol 91:398–400.

    CAS  Google Scholar 

  • Smith FF, Scott JG (1997) Functional expression of housefly (Musca domestica) cytochrome P450 CYP6D1 in yeast (Saccharomyces cerevisiae). Insect Biochem Mol Biol 27:999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Sun CN, Tsai YC, Chiang FM (1992) Resistance in the diamondback moth to pyrethroids and benzoylphenylureas. In: Mullin CA, Scott JG (eds) Molecular mechanisms of insecticide resistance: diversity among insects. ACS Symposium Series 505. American Chemical Society, Washington, DC, pp 149–167.

    Google Scholar 

  • Terriere LC (1983) Enzyme induction, gene amplification, and insect resistance to insecticides. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York, pp 265–298.

    Google Scholar 

  • Terriere LC (1984) Induction of detoxication enzymes in insects. Annu Rev Entomol 29:71–88.

    Article  PubMed  CAS  Google Scholar 

  • Terriere LC, Yu SJ (1974) The induction of detoxifying enzymes in insects. J Agric Food Chem 22:366–376.

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Scott JG (1995) cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in the housefly. Insect Biochem Mol Biol 25:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Liu N, Smith FF, Sridhar P, Scott JG (1995) Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect Mol Biol 4:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Valles SM, Yu SJ (1996) Detection and biochemical characterization of insecticide resistance in the German cockroach (Dictyoptera: Blattelidae). J Econ Entomol 89:21–26.

    CAS  Google Scholar 

  • Vatsis KP, Gurka DP, Hollenberg PF (1980) Involvement of cytochrome b5 in the NADPH-dependent regioselective hydroxylation of N-methylcarbazole by cytochrome P-450LM2 and P-450LM4 in a reconstituted liver microsomal enzyme system. In: Gustafsson J, Carlstedt-Duke J, Mode A, Rafter J (eds) Biochemistry, biophysics, and regulation of cytochrome P-450. Elsevier, New York, pp 347–350.

    Google Scholar 

  • Vincent DR, Moldenke AF, Farnsworth DE, Terriere LC (1985) Cytochrome P-450 in insects. 6. Age dependency and phenobarbital induction of cytochrome P-450, P-450 reductase, and monooxygenase activities in susceptible and resistant strains of Musca domestica. Pestic Biochem Physiol 23:171–181.

    Article  CAS  Google Scholar 

  • Wen Z, Scott JG (1997) Cross-resistance to imidacloprid in strains of German cockroach (Blattella germanica) and housefly (Musca domestica). Pestic Sci 49:367–371.

    Article  CAS  Google Scholar 

  • Wheelock GD, Scott JG (1989) Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the housefly Musca domestica L. Insect Biochem 19:481–488.

    Article  CAS  Google Scholar 

  • Wheelock GD, Scott JG (1990) Immunological detection of cytochrome P450 from insecticide resistant and susceptible houseflies (Musca domestica). Pestic Biochem Physiol 38:130–139.

    Article  CAS  Google Scholar 

  • Wheelock GD, Scott JG (1992a) Anti-P450lpr antiserum inhibits specific monooxygenase activities in LPR housefly microsomes. J Exp Zool 264:153–158.

    Article  PubMed  CAS  Google Scholar 

  • Wheelock GD, Scott JG (1992b) The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid resistant and susceptible strains of houseflies. Pestic Biochem Physiol 43:67–77.

    Article  CAS  Google Scholar 

  • Wheelock GD, Konno Y, Scott JG (1991) Expression of P450lpr is developmentally regulated and limited to housefly. J Biochem Toxicol 6:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CF (1967) Penetration, metabolism, and synergistic activity with carbaryl of some simple derivatives of 1,3-benzodioxole in the housefly. J Agric Food Chem 15:139–147.

    Article  CAS  Google Scholar 

  • Wilkinson CF (1983) Role of mixed-function oxidases in insecticide resistance. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York, pp 175–206.

    Google Scholar 

  • Wilkinson CF (1985) Role of mixed-function oxidases in insect growth and development. In: Hedin PA (ed) Bioregulators for pest control. ACS Symp Ser 276. American Chemical Society, Washington, DC, pp 161–176.

    Google Scholar 

  • World Health Organization (1957) Expert committee on insecticides. WHO Tech Rep Ser 7th Rep, 125 pp.

    Google Scholar 

  • World Health Organization (1976) 22nd Report by the Expert Committee on Insecticides. WHO Tech Rep Ser 585:77.

    Google Scholar 

  • Yu SJ (1996) Insect glutathione S-transferases. Zool Stud 35:9–19.

    CAS  Google Scholar 

  • Zhang M, Scott JG (1994) Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in housefly microsomes. Arch Insect Biochem Physiol 27:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Scott JG (1996) Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR houseflies. Pestic Biochem Physiol 55:150–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Scott, J.G. (2001). Cytochrome P450 Monooxygenases and Insecticide Resistance: Lessons from CYP6D1 . In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics