Skip to main content

Strain-Dependent Fluorescence Correlation Spectroscopy: Proposing a New Measurement for Conformational Fluctuations of Biological Macromolecules

  • Chapter
Fluorescence Correlation Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 65))

  • 1086 Accesses

Abstract

Biological macromolecules are often highly structured and perform complex functions. Due to this complexity, individual macromolecules in a population can differ from each other at any moment in behavior and properties. This variation from molecule to molecule within a population can obscure measurements of structural and functional details. Therefore, the ability to manipulate and characterize individual macromolecules could substantially improve our access to detailed information about molecular structure and function, and is a goal sought avidly during the last three decades. However, analysis of the behavior of single molecules differs fundamentally from that of conventional chemical kinetics: processes involving single molecules are inevitably stochastic because of thermal fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Elson and D. Magde: Biopolymers13, 1–27 (1974)

    Article  Google Scholar 

  2. E. Elson and W.W. Webb: Annu. Rev. Biophys. Bioeng 4, 311–34 (1975)

    Article  Google Scholar 

  3. D. Magde, E.L. Elson, and W.W. Webb: Phys. Rev. Lett. 29, 705–708 (1972)

    Article  ADS  Google Scholar 

  4. M.S. Kellermayer, S.B. Smith, H.L. Granzier, andC. Bustamante: [published erratum appears in Science 1997 Aug 22;277 1117:(5329)]. Science276, 1112–6 (1997)

    Article  Google Scholar 

  5. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, andH.E. Gaub: Science 276 (5315), 1109–12 (1997a)

    Article  Google Scholar 

  6. L. Tskhovrebova, J. Trinick, J.A. Sleep, andR.M. Simmons: Nature 387, 308–12 (1997)

    Article  ADS  Google Scholar 

  7. J.F. Allemand, D. Bensimon, R. Lavery, andV. Croquette: Proc. Natl. Acad. Sci. USA 95(24) 14152–7 (1998)

    Article  ADS  Google Scholar 

  8. S.B. Smith, Y. Cui, andC. Bustamante: Science 271(5250), 795–9 (1996)

    Article  ADS  Google Scholar 

  9. T.R. Strick, V. Croquette, andD. Bensimon: Proc. Natl. Acad. Sci. USA 95(18), 10579–83 (1998)

    Article  ADS  Google Scholar 

  10. M. Rief, F. Oesterhelt, B. Heymann, andH.E. Gaub: Science 275(5304), 1295–7 (1997b)

    Article  Google Scholar 

  11. H.P. Erickson: Proc. Natl. Acad. Sci. USA 91(21) 10114–8 (1994)

    Article  ADS  Google Scholar 

  12. H. Qian and B.E. Shapiro: Prot. Struct. Funct. Genet 37, 576–581 (1999)

    Article  Google Scholar 

  13. H. Qian and S.I. Chan: J. Mol. Biol. 286, 607-616 (1999)

    Article  Google Scholar 

  14. M. Doi and S.F. Edwards: The Theory of Polymer Dynamics. Clarendon Press, Oxford, (1988)

    Google Scholar 

  15. H. Qian: http://xxx.lanl.gov/abs/physics/0007017 (2000)

    Google Scholar 

  16. H.A. Kramers: Physica (Utrecht) 7, 284–304 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P.G.Wolynes, J.N. Onuchic, and D. Thirumalai: Science 267(5204), 1619–20 (1995)

    Article  ADS  Google Scholar 

  18. E.L. Elson: Biopolymers 11(7),1499–520 (1972)

    Article  Google Scholar 

  19. D. Magde, E.L. Elson, and W.W. Webb: Biopolymers 13(1)29–61 (1974)

    Article  Google Scholar 

  20. D. Magde, W.W. Webb, andE.L. Elson: Biopolymers 17, 361–376 (1978)

    Article  Google Scholar 

  21. M.S. Kellermayer, S.B. Smith, C. Bustamante, andH.L. Granzier: J. Struct. Biol. 122(1-2), 197–205 (1998)

    Article  Google Scholar 

  22. P.E. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A.F. Oberhauser, K. Schulten, And J.M. Fernandez: Nature402(6757), 100–3 (1999)

    Article  ADS  Google Scholar 

  23. M. Rief, M. Gautel, A. Schemmel, and H.E. Gaub: Biophys. J.75(6), 3008–14 (1998)

    Article  Google Scholar 

  24. A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, And J.M. Fernandez: Nature393(6681), 181–5 (1998)

    Article  ADS  Google Scholar 

  25. M. Rief, H. Clausen-Schaumann, and H.E. Gaub6(4), 346–9 (1999)

    Article  Google Scholar 

  26. P.E. Marszalek, A.F. Oberhauser, Y.P. Pang, and J.M. Fernandez: Nature396(6712), 661–4 (1998)

    Article  ADS  Google Scholar 

  27. R.B. Inman: J. Mol. Biol.18(3), 464–76 (1966)

    Article  Google Scholar 

  28. R.B. Inman: J. Mol. Biol.28(1), 103–16 (1967)

    Article  Google Scholar 

  29. K. Kitamura, M. Tokunaga, A.H. Iwane, and T. Yanagida: Nature397(6715), 129–34 (1999)

    Article  ADS  Google Scholar 

  30. T.Y. Tsong, R.L. Baldwin, and E.L. Elson: Proc. Natl. Acad. Sci. USA68(11), 2712–15 (1971)

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg, New York

About this chapter

Cite this chapter

Qian, H., Elson, E.L. (2001). Strain-Dependent Fluorescence Correlation Spectroscopy: Proposing a New Measurement for Conformational Fluctuations of Biological Macromolecules. In: Fluorescence Correlation Spectroscopy. Springer Series in Chemical Physics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59542-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59542-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64018-6

  • Online ISBN: 978-3-642-59542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics