Skip to main content

Fluorescence Correlation Spectroscopy in Nucleic Acid Analysis

  • Chapter
Book cover Fluorescence Correlation Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 65))

Abstract

Laser induced fluorescence correlation spectroscopy (FCS) is a new, developing branch in nucleic acid analysis. Interest in FCS has increased enormously over the past few years[3.1–3.3] as a result of the introduction of the confocal volume of detection [3.4–3.6]. Fluorescent molecules are observed in a very small volume element of ≈ 1 fl ( 10−15 1) excited by a well-focused laser beam. The femtoliter “cavity”defined by the laser is either stationary or scans through the solution or matrix [3.7–3.13]. The emitted fluorescence bursts are detected from individual molecules. This enables a single fluorescent molecule in solution or on a matrix at room temperature to be measured with a negligible background. The principles of the identification nucleic acids target sites are linked closely to the concept of thermal fluctuations [3.14–3.17]. Due to thermodynamic fluctuations the number of molecules, for example, will fluctuate in the observed volume element. For small numbers Nof molecules, Poisson statistics are valid and the statistical parameters, mean value, variance and standard deviation, can be determined. The variance is directly related to the number of molecules. In other words, examination of the thermal fluctuations is sufficient to obtain the absolute number of molecules without any calibration. If the biochemical relaxation time τchem is much larger than the characteristic diffusion time τDiff, then the biochemical reaction is not equilibrated during diffusion through the three-dimensional volume element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Rigler: J. Biotechnol. 41, 177–186 (1995)

    Google Scholar 

  2. M. Eigen and R. Rigler: Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994)

    Article  ADS  Google Scholar 

  3. S. Maiti, U. Haupts, and W.W. Webb: Proc. Natl. Acad. Sci. USA 94, 11753–11757 (1997)

    Article  ADS  Google Scholar 

  4. R. Rigler andÜ. Mets: SPIE Laser Spectroscopy of Biomolecules 1921, 239–248 (1992)

    ADS  Google Scholar 

  5. R. Rigler, Ü. Mets, J. Widengren, andP. Kask: Eur. Biophys.J. 22, 169–175 (1993)

    Article  Google Scholar 

  6. U. Mets andR. Rigler: J. Fluoresc. 4, 259–264 (1994)

    Article  Google Scholar 

  7. J. Dapprich, Ü. Mets, W. Simm, M. Eigen, and R. Rigler: Exp. Tech. Phys.41, 259-264 (1995)

    Google Scholar 

  8. L. Edman, Ü. Mets, andR. Rigler: Proc. Natl. Acad. Sci. USA 93, 6710–6715 (1996)

    Article  ADS  Google Scholar 

  9. S. Wennmalm, L. Edman, andR. Rigler: Proc. Natl. Acad. Sci. USA 94, 10641–10646 (1997)

    Article  ADS  Google Scholar 

  10. L. Edman, S. Wennmalm, F. Tamsen, andR. Rigler: Chem. Phys. Lett. 63, 97–109 (1998)

    Google Scholar 

  11. S. Wennmalm andR. Rigler: J. Phys. Chem. B 103, 2516–2519 (1998)

    Article  Google Scholar 

  12. S. Wennmalm, L. Edman, andR. Rigler: Chem. Phys. 247 61–67 (1999)

    Article  ADS  Google Scholar 

  13. L. Edman, Z. Földes-Papp, S. Wennmalm, and R. Rigler: Chem. Phys. 247, 11–22 (1999)

    Article  ADS  Google Scholar 

  14. D. Magde, E.L. Elson, andW.W. Webb: Phys. Rev. Lett. 29 705–711 (1972)

    Article  ADS  Google Scholar 

  15. E.L. Elson andD. Magde: Biopolymers 13, 1–27 (1974)

    Article  Google Scholar 

  16. D.W. Koppel: Phys. Rev. 10 1938–1945 (1974)

    Article  ADS  Google Scholar 

  17. M. Ehrenberg andR. Rigler: Chem. Phys. 4, 390–401 (1974)

    Article  ADS  Google Scholar 

  18. C. Eggeling, J.R. Fries, L. Brand, R. Günther, andC.A.M. Seidel: Proc. Natl. Acad. Sci. USA 95, 1556–1561 (1998)

    Article  ADS  Google Scholar 

  19. G. Bonnet, O. Krichevsky, andA. Libchaber: Proc. Natl. Acad. Sci. USA 95, 8602–8606 (1998)

    Article  ADS  Google Scholar 

  20. H. Qian andE.L. Elson: Biophys. J. 76 1598–1605 (1999)

    Article  ADS  Google Scholar 

  21. E.M. Southern: J. Mol. Biol. 98 503–517 (1975)

    Article  Google Scholar 

  22. J.C. Alvine, D.J. Kemp, and G.R. Stark: Proc. Natl. Acad. Sci. USA 74 5350–5354 (1977)

    Article  ADS  Google Scholar 

  23. T.J. Kelly and H.O. Smith: J. Mol. Biol. 51 393–409 (1970)

    Article  Google Scholar 

  24. K. Danna andD. Nathans: Proc. Natl. Acad. Sci. USA 68, 2913–2917 (1971)

    Article  ADS  Google Scholar 

  25. S.M. Koepf: Micro-array technologies for high through-put genetic analysis. In: Proc. IBC's International Conference on Massively Parallel DNA Analysis-Application of Alternative DNA Diagnostics, San Francisco (1998)

    Google Scholar 

  26. R.F. Service:Science 2831669 (1999)

    Article  ADS  Google Scholar 

  27. E. Zubritsky: Anal. Chem. 71(5) 191A–195A (1999)

    Article  Google Scholar 

  28. W. Sanger: Principles of Nucleic Acid Structure. (Springer, New York 1988)

    Google Scholar 

  29. K.J. Breslauer, R. Frank, H. Blocker, andL.A. Marky: Proc. Natl. Acad. USA 83, 3746–3750 (1986)

    Article  ADS  Google Scholar 

  30. K.J. Breslauer: Methods for obtaining thermodynamic data on oligonucleotide transitions. In: Thermodynamic data for Biochemistry and Biotechnology. H.-J. Hinz, ed. (Springer, New York 1986) pp.402–427

    Google Scholar 

  31. B. Rauer, E. Neumann, J. Widengren, andR. Rigler: Biophys. Chem. 58 3–12 (1996)

    Article  Google Scholar 

  32. S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, andR. Rigler: Biochemistry 37, 12971–12978 (1998)

    Article  Google Scholar 

  33. M. Sauer, K.-T. Han, R. Muller, S. Nord, A. Schultz, S. Seeger, J. Wolfrum, J. Arden-Jacobi, G. Deltau, N.J. Marx, C. Zander, andK.H. Drexhage: J. Fluoresc. 5, 247–261 (1995)

    Article  Google Scholar 

  34. J. Widengren, J. Dapprich, andR. Rigler: Chem. Phys. 216, 417–428 (1997)

    Article  Google Scholar 

  35. M. Kinjo andR. Rigler: Nucleic. Acids. Res. 23, 1795–1799 (1995)

    Article  Google Scholar 

  36. E. Uhlmann, A. Peyman, G. Breipohp, andW.D. Will: Angew. Chem. Int. Ed. Engl. 37, 2796–2823 (1998)

    Article  Google Scholar 

  37. P. Aich, P. Nielsen, andR. Rigler: Nucleosides & Nucleotides 16, 609–615 (1997)

    Article  Google Scholar 

  38. P. Schwille, F. Oehlenschlager, andN.G. Walter: Biochemistry 35, 10182– 10193 (1996)

    Article  Google Scholar 

  39. E. Uhlmann andA. Peyman: Chem. Rev. 90, 543–584 (1990)

    Article  Google Scholar 

  40. C.A. Stein andY.C. Cheng: Science 261,261, 1004–1012 (1993)

    Article  ADS  Google Scholar 

  41. S.T. Crooke andC.F. Bennett: Annu. Rev. Pharmacol. Toxicol 36, 107–130 (1996)

    Article  Google Scholar 

  42. G. Schwab, C. Chavany, I. Duroux, G. Goubin, J. Lebeaur, C. Hélène, andT. Saison-Behmoaras: Proc. Natl. Acad. Sci. USA 91, 10460–10464 (1994)

    Article  ADS  Google Scholar 

  43. V.V. Vlassov, I.E. Vlassova, and L.V. Pautova: Oliogonucleotides and polynucleotides as biologically active compounds. In: Progress in Nucleic Acid K. Moldave, ed Research and Molecular Biology; vol.57. K. Moldave, ed. (Academic Press, San Diego 1997) pp.95–143

    Chapter  Google Scholar 

  44. P.S. Miller: Development of antisense and antigene oligonucleotide analogs. In: Progress in Nucleic Acid Research and Molecular Biology; vol.52. W.E. Cohn, K. Moldave, eds. (Academic Press, San Diego 1996) pp.261–291

    Chapter  Google Scholar 

  45. A.V. Orden andR.A. Keller: Anal. Chem. 70, 4463–4471 (1998)

    Article  Google Scholar 

  46. T. Winkler, U. Kettling, A. Koltermann, andM. Eigen: Proc. Natl. Acad. Sci. USA 96, 1375–1378 (1999)

    Article  ADS  Google Scholar 

  47. J. Politz, E. Browne, D. Wolf, andT. Pederson: Proc Natl Acad Sci USA 95, 6043–6048 (1998)

    Article  ADS  Google Scholar 

  48. P. Wentworth andK.D. Janda: Current Opinion in Biotechnology 9, 109–115 (1998)

    Article  Google Scholar 

  49. Z. Földes-Papp, G. Baumann, E. Birch-Hirchfeld, H. Eickhoff, K.O. Greulich, A.K. Kleinschmidt, and H. Seliger: Biopolymers 45, 361–379 (1998)

    Article  Google Scholar 

  50. R.J. Lipshutz, S.P.A. Fodor, T.R. Gingeras, andD.J. Lockhart: Nature Genetics Microarray Suppl. 21, 20–24 (1999)

    Article  Google Scholar 

  51. D.D.L. Bowtell: Nature Genetics Microarray. Suppl. 21, 25–32 (1999)

    Article  Google Scholar 

  52. M.A. Burns, B.N Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, and D.T. Burke: Science 282, 484–487 (1998)

    Article  ADS  Google Scholar 

  53. H.-P. Chou, C. Spence, A. Scherer, and S. Quarke: Proc. Natl. Acad. Sci. USA 96, 11–13 (1999)

    Article  ADS  Google Scholar 

  54. E. Southern, K. Mir, M. Shchepinow: Nature Genetics, Supplement 21, (Microarray) 5–9 (1999)

    Article  Google Scholar 

  55. P. Schwille, F.-J. Meyer-Almes, and R. Rigler: Biohys. J. 72 , 1878–1886 (1997)

    Article  Google Scholar 

  56. R. Rigler, Z. Földes-Papp, F.-J. Meyer-Almes, C. Sammet, M. Völcker, and A. Schnetz: J. Biotechnol. 63 97–109 (1998)

    Article  Google Scholar 

  57. Z. Földes-Papp and R. Rigler: Quantitative two-color fluorescence crosscorrelation spectroscopy in the analysis of polymerase chain reaction. Biol. Chem. (2001) in press

    Google Scholar 

  58. U. Kettling, A. Koltermann, P. Schwille, and M. Eigen: Proc. Natl. Acad. Sci. USA 95, 1416–1420 (1998)

    Article  ADS  Google Scholar 

  59. A. Koltermann, U. Kettling, J. Bieschke, T. Winkler, and M. Eigen: Proc. Natl. Acad. Sci. USA 95, 1421–1426 (1998)

    Article  ADS  Google Scholar 

  60. T. Winkler, U. Kettling, A. Koltermann, and M. Eigen: Proc. Natl. Acad. Sci. USA 96, 1375–1378 (1999)

    Article  ADS  Google Scholar 

  61. J. Holm, H. Elderstig, O. Kristensen, and R. Rigler: μTAS' 96, 85-87 (1996)

    Google Scholar 

  62. J. Holm, H. Ederstig, O. Kristensen, and R. Rigler: Nucleosides & Nucleotides 16, 557–562 (1997)

    Article  Google Scholar 

  63. J. Holm, Z. Földes-Papp, P. Thyberg, and R. Rigler: Single bead analysis and enzymatic DNA degradations in quartz glass microstructures. Personal communication (1998)

    Google Scholar 

  64. N.J. Dovichi, J.C. Martin, J.H. Jett, and R.A. Keller: Science 219, 845–847 (1983)

    Article  ADS  Google Scholar 

  65. D.C. Nguyen, R.A. Keller, J.H. Jett, and J.C. Martin: Anal. Chem. 59 2158–2161 (1987)

    Article  Google Scholar 

  66. D.C. Nguyen, R.A. Keller, and M. Trikula: J. Opt.Soc. Am. B 4, 138–143 (1987)

    Article  ADS  Google Scholar 

  67. E.B. Shera, N.K. Seitzinger, L.M. Davis, R.A. Keller, and S.A. Soper: Chem. Phys. Lett. 174, 553–557 (1990)

    Article  ADS  Google Scholar 

  68. S.A. Soper, L.M. Davis, and E.B. Shera: J. Opt. Soc. Am. B 9, 1761–1769 (1992)

    Article  ADS  Google Scholar 

  69. J.H. Jett, R.A. Keller, J.C. Martin, B.L. Marrone, R.K. Moyzis, R.L. Ratliff, N.K. Seitzinger, E.B. Shera, and C.C. Stewart: J. Biomol. Struct. Dyn. 7, 301–309 (1989)

    Google Scholar 

  70. L.M. Davis, F.R. Fairfield, C.A. Harger, J.H. Jett, R.A. Keller, J.H. Hahn, L.A. Krakowski, B.L. Marrone, J.C. Martin, H.L. Nutter, R.L. Ratliff, E.B. Shera, D.J. Simpson, and S.A. Soper: Genetic Analysis: Techniques and Applications 8, 1–7 (1991)

    Google Scholar 

  71. W.R Ambrose, P.M. Goodwin, J.H. Jett, M.E. Johnson, J.C. Martin, B.L. Marrone, J.A. Schecker, C.W. Wilkerson, R.A. Keller, A. Haces, P.-O. Shih, and J.D. Harding: Ber. Bunsenges. Phys. Chem. 97, 1535–1542 (1993)

    Google Scholar 

  72. P.M. Goodwin, H. Cai, J.H. Jett, S.L. Whang, N.P. Machura, D.J. Semin, A.V. Orden, and R.A. Keller: Nucleosides & Nucleotides 16, 543–550 (1997)

    Article  Google Scholar 

  73. K. Dörre, S. Brakmann, M. Brinkmeier, K.-T. Han, K. Riebesel, P. Schwille, J. Stephan, T. Wetzel, M. Lapczyna, M. Stuke, R. Bader, M. Hinz, H. Seliger, J. Holm, M. Eigen, and R. Rigler: Bioimaging 5, 139–152 (1997)

    Article  Google Scholar 

  74. J. Stephan, K. Dörre, S. Brakmann, T. Winkler, T. Wetzel, M. Lapczyna, M. Stuke, B. Angerer, W. Ankenbauer, Z. Földes-Papp, R. Rigler, and M. Eigen: J. Biotechnol. 86 (3), (2001) in press

    Google Scholar 

  75. Z. Larin, M.D. Pricker, E. Maher, Y. Ishikawa-Brush, and E.M. Southern: Nucleic Acids Res. 22, 3689–3692 (1994)

    Article  Google Scholar 

  76. K. Anamthawat-Jónsson and S.M. Reader: Genome 38 (4), 814–816 (1995)

    Article  Google Scholar 

  77. D. Anderson, T.-U. Yu, and M.A. Browne: Mutation Res. 390, 69–77 (1997)

    Google Scholar 

  78. H. Zitzelsberger, L. Lehmann, M. Werner, and M. Bauchinger: Histochem. Cell. Biol. 108, 403–417 (1997)

    Article  Google Scholar 

  79. Z. Földes-Papp, B. Angerer, W. Ankenbauer, G. Baumann, E. Birch-Hirschfeld, S. Bjorling, S. Conrad, M. Hinz, R. Rigler, H. Seliger, P. Thyberg, and A.K. Kleinschmidt: Modeling the dynamics of nonenzymatic and enzymatic nucleotide processes by fractal dimension. In: Fractals in Biology and Medicine, Vol.11. G.A. Losa, D. Merlini, T.F. Nonnenmacher, E.R. Weibel, eds. (Birkhauser, New York 1998) pp.238–254

    Chapter  Google Scholar 

  80. M. Augustin, W. Ankenbauer, and B. Angerer: J. Biotechnol. 86 (3), (2001) in press

    Google Scholar 

  81. Z. Földes-Papp, B. Angerer, W. Ankenbauer, and R. Rigler: J. Biotechnol. (2001) 86(3), in press

    Google Scholar 

  82. Z. Földes-Papp, B. Angerer, and R. Rigler: Filling-up reactions with mesophilic and thermostable polymerases and reverse transcriptases for high-density labeling of DNA by complete substitutions of fluorescent dyedNTPs for their respective natural dNTPs. Personal communication (1997)

    Google Scholar 

  83. Z. Földes-Papp, B. Angerer, P. Thyberg, M. Hinz, S. Wennmalm, W. Ankenbauer, H. Seliger, A. Holmgren, R. Rigler: J. Biotechnol. 86 (3), (2001) in press

    Google Scholar 

  84. M. Sauer, B. Angerer, W. Ankenbauer, K.H. Dexhage, Z. Földes-Papp, F. Göbel, K.-T. Han, R. Rigler, J. Wolfrum, and C. Zander: J. Biotechnol. (2001) 86 (3), in press

    Google Scholar 

  85. G. Nishimura, R. Rigler, and M. Kinjo: Bioimaging 5, 129–133 (1997)

    Article  Google Scholar 

  86. Z. Földes-Papp, P. Thyberg, S. Björling, A. Holmgren, and R. Rigler: Nucleotides & Nucleosides 16, 781–787 (1997)

    Article  Google Scholar 

  87. K. Hori, D.F. Mark, und C.C. Richardson: J. Biol. Chem. 254, 11598–11604 (1997)

    Google Scholar 

  88. I. Slaby and A. Holmgren: Protein Expression and Purification 2, 270–277 (1991)

    Article  Google Scholar 

  89. S. Forsblom, R. Rigler, M. Ehrenberg, U. Petterson, and L. Philipson: Nucleic Acids Res. 3, 3255–3269 (1976)

    Google Scholar 

  90. P.R. Billings, C.L. Smith, and C.R. Cantor: FASEB J. 5, 28–43 (1991)

    Google Scholar 

  91. M. Kinjo, G. Nishimura, T. Koyama, Ü. Mets, and R. Rigler: Anal. Biochem. 260, 166–172 (1998)

    Article  Google Scholar 

  92. M. Kinjo and G. Nishimura: Bioimaging 5, 134–138 (1997)

    Article  Google Scholar 

  93. M. Kinjo: Biotechniques 25, 706–715 (1998)

    Google Scholar 

  94. N.G. Walter, P. Schwille, and M. Eigen: Proc. Natl. Acad. Sci. USA 93,12805–12810 (1996)

    Article  ADS  Google Scholar 

  95. A. Kornberg and T. Baker: DNA Replication. 2nd edn. (Freeman, New York 1992)

    Google Scholar 

  96. P. Tijssen: Hybridization with nucleic acid probes. In: Laboratory Techniques in Biochemistry and Molecular Biology. (Elsevier, Amsterdam 1999) pp.207-211

    Google Scholar 

  97. F. Oehlenschlager, P. Schwille, and M. Eigen: Proc. Natl. Acad. Sci. USA 93, 12811–12816 (1996)

    Article  ADS  Google Scholar 

  98. C. Dang and D. Jayasena: J. Mol. Biol. 264, 268–278 (1996)

    Article  Google Scholar 

  99. Y.S. Lie and C.J. Petropoulos: Current Opinion in Biotechnology 9, 43–48 (1998)

    Article  Google Scholar 

  100. K.-P. Hopfner, A. Eichinger, R.A. Engh, F. Laue, W. Ankenbauer, R. Huber, and B. Angerer: Proc. Natl. Acad. Sci. USA 96, 3600–3605 (1999)

    Article  ADS  Google Scholar 

  101. M. Kinjo: Anal. Chim. Acta 365, 43–48 (1998)

    Article  Google Scholar 

  102. R. Higuchi, C. Fockler, G. Dollinger, and R. Watson: Bio/Technology 11, 1026–1030 (1993)

    Article  Google Scholar 

  103. J. Ju, A.N. Glazer, and R.A. Mathies: Nature Medicine 2, 236–249 (1996)

    Article  Google Scholar 

  104. R. Brock, G. Vàmosi, G. Vereb, and T.M. Jovin: Proc. Natl. Acad. Sci. USA 96, 10123–101128 (1999)

    Article  ADS  Google Scholar 

  105. J. Korlach, P. Schwille, W.W Webb, and G.W. Feigenson: Proc. Natl. Acad. Sci. USA 96, 8461–8466 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Foldes-Pappn, Z., Kinjo, M. (2001). Fluorescence Correlation Spectroscopy in Nucleic Acid Analysis. In: Fluorescence Correlation Spectroscopy. Springer Series in Chemical Physics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59542-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59542-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64018-6

  • Online ISBN: 978-3-642-59542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics