Skip to main content

Pharmakotherapie des Diabetes mellitus Typ 2

  • Chapter
Klinische Diabetologie

Zusammenfassung

Im Gegensatz zur Therapie des Typ1-Diabetes, dessen Behandlung, die Insulinsubstitution, von Diagnosestellung an klar vorgegeben ist, gestaltet sich die Behandlung des Typ 2-Diabetikers komplizierter. Dafür sind sowohl die Heterogenität des Patientenkollektivs als auch die zum Typ 1-Diabetes unterschiedlichen pathogenetischen Mechanismen verantwortlich; die von Patient zu Patient unterschiedliche Relation von Insulinresistenz und Insulindefizit sowie das Ausmaß der metabolischen Dekompensation, aber auch Alter, Ausmaß bereits vorhandener Folge- und Begleiterkrankungen sowie die Prognose des Patienten sind Aspekte, die bei der Therapiewahl bedacht werden müssen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement IV JP, Boyd III AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the B-cell high affinity sulfony-lurea receptor: A regulator of insulin secretion. Science 268: 423

    Article  PubMed  CAS  Google Scholar 

  • Althoff PH, Faßbinder W, Neubauer M, Koch KM, Schöffling K (1978) Hämodialyse bei der Behandlung der biguanid-induzierten Lactacidose. Dtsch Med Wochenschr 103: 61

    Article  PubMed  CAS  Google Scholar 

  • Climt CR, Knatterud GL, Meinert CL: The University Group Diabetes Program (UGDP I) (1970) A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. Diabetes 19 (Suppl 2 ): 474–830

    Google Scholar 

  • Ashcroft FM (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res 28: 456

    Article  PubMed  CAS  Google Scholar 

  • Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48: 1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Asplund K, Wiholm B-E, Lithner F (1983) Glibenclamide-asso-ciated hypoglycaemia. A report on 57 cases. Diabetologia 24: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res 69: 618–622

    PubMed  CAS  Google Scholar 

  • Bachmann W, Sieger C, Haslbeck M, Lotz N (1981) Combination of insulin and glibenclamide in the treatment of adult- onset-diabetes (type 2). Diabetologia 21: 245–249

    Google Scholar 

  • Bachmann W, Löbe A, Lacher F (1995) Medikamentös bedingte Hypoglykämien bei Typ 2-Diabetes. Diabetes und Stoff-wechsel 4: 83

    Google Scholar 

  • Bänder A, Creutzfeld W, Dorfmüller TH, Erhart H, Marx R, Maske H, Meier W, Mohnike G, Pfeiffer EF, Schlaginweit ST, Schöffling K, Scholz J, Seidler J, Steigerwald H, Stich W, Ulrich H (1956) Über die orale Behandlung des Diabetes melli- tus mit N-4 Methylbenzolsulfonyl-N-butyl-Harnstoff D 860. Klinische und experimentelle Untersuchungen. Dtsch Med Wochenschr 81: 823

    Google Scholar 

  • Bailey CJ (1992) Biguanides and NIDDM. Diabetes Care 15: 755–772

    Article  PubMed  CAS  Google Scholar 

  • Baron A, Neumann C (1997) PROTECT interim results: a large multicenter study of patients with type 2 diabetes. Clin The-rapeutics 19: 282–295

    Article  CAS  Google Scholar 

  • Belloni FL, Hintze TH (1991) Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilation. Am J Physiol 261: H720–H727

    PubMed  CAS  Google Scholar 

  • Berger W (1985) Incidence of severe side effects during therapy with sulfonylureas and biguanides. Horm Metab Res 17 Suppl 15: 111–115

    CAS  Google Scholar 

  • Berger W, Amrein R (1978) Laktatazidosen unter der Behandlung mit den drei Biguanidpräparaten Phenformin, Buformin und Metformin—Resultate einer Gesamtschweizerischen-Umfrage 1977. Schweiz Rundsch Med Prax 67: 661–667

    PubMed  CAS  Google Scholar 

  • Bethge H, Häring U (1998) Die Thiazolidindione—ein neues Therapieprinzip beim Typ 2-Diabetes. Arzneimittelforsch Drug Res 48: 97–119

    CAS  Google Scholar 

  • Bischoff H (1995) Alpha-glucosidase inhibition, a new therapeutic principle in the management of diabetes mellitus. In: Schwartz CJ, Born GVR (eds) New horizons in diabetes mel- litus and cardiovascular disease. Current Science, London, pp 207–215

    Google Scholar 

  • Boyd AE III (1988) Sulfonylurea receptors, ion channels, and fruit flies. Diabetes 37: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Campbell IW, Howlett HCS (1995) Worldwide experience of Metformin as an effective glucose-lowering agent: a meta analysis. Diab Metab Rev 11: S57–S62

    Article  CAS  Google Scholar 

  • Carpentier J-L, Sawano F, Ravazzola M, Malaisse WJ (1986) Internalization of glibenclamide in pancreatic islet cells. Diabetologia 29: 259–261

    Article  PubMed  CAS  Google Scholar 

  • Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, Ryan EA, Tang MH, Wolever TMS (1995) The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. Diabetes und Stoffwechsel 4: 3–8

    Google Scholar 

  • Chiasson JL, Josse RG, Leiter LA, Mihic M, Nathan DM, Palmason C, Cohen RM, Wolever TMS (1996) The affect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabetes Care 19: 1190–1193

    Article  PubMed  CAS  Google Scholar 

  • Colwell JA (1993) Is it time to introduce metformin in the US? Diabetes Care 16: 653–55

    PubMed  CAS  Google Scholar 

  • Cook DL, Satin LS, Ashford MLJ, Hales CN (1988) ATP-sensitive K+ channels in pancreatic B-cells. Spare channel hypothesis. Diabetes 37: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Cusi R, De Fronzo RA (1998) Metformin: a review of its metabolic effects. Diabetes Reviews 6: 89–131

    Google Scholar 

  • De Fronzo RA, Goodman AM (1995) Multicenter metformin study-group: efficacy of metformin in patients with non-insulin dependent diabetes mellitus. N Engl J Med 333: 541–549

    Article  Google Scholar 

  • De Fronzo RA, Barzilai N, Simonson DC (1991) Mechanism of Metformin action in obese and lean non-insulin-dependent diabetic subjects. J Clin Endocrinol 73: 1294–1301

    Article  Google Scholar 

  • Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW, Herrmann HC, Laskey WK (1990) Adaption to ischemia during percutaneous transluminal coronary angioplasty: clinical, hemodynamic and metabolic features. Circulation 82: 2044–2051

    Article  PubMed  CAS  Google Scholar 

  • Diederen W, Kolb W (1997) Rep aglinid, a new rapid and short-acting non-sulphonylurea insulin secretagogue inhibits ATP-sensitive potassium channels (IKATP) in isolated heart muscle cells. 16th International Diabetes Federation Congress, Helsinki, Finland, 20–25 July

    Google Scholar 

  • Dominguez LJ, Davidoff AJ, Srinivas PR, Standley PR, Walsh MF, Sowers JR (1996) Effects of metformin on tyrosine kinase activity, glucose transport and intracellular calium in rat vascular smooth muscle. Endocrinology 137: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Draeger E (1995) Glimepiride-clinical profile of glimepiride. Diab Res Pract 28: 139

    Article  Google Scholar 

  • Duncker DJ, Zon NS van, Altmann JD, Pavek DJ, Bache RJ (1993) Role of K-ATP-channels in coronary vasodilation during exercise. Circulation 88: 1245–1253

    PubMed  CAS  Google Scholar 

  • Federlin KF, Mehlburger L, Hillebrand I, Laube H (1987) The effect of two new glucosidase inhibitors on blood glucose in healthy volunteers and in type 2 diabetics. Acta Diabetol Latinoam 24: 213–221

    Article  CAS  Google Scholar 

  • Fischer Y, Thoma J, Rosen P, Kammermeier H (1995): Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscles from healthy and diabetic rats. Endocrinology 136: 412–420

    Article  PubMed  CAS  Google Scholar 

  • Fox C (1996) A 1 year multicentre, randomized and double blind comparison of repaglinide and glibenclamide for the treatment of type 2 diabetes mellitus. Novo Nordisk study AGEE/DCD/o46/UK: Data on file

    Google Scholar 

  • Franke H, Fuchs J (1955) Ein neues antidiabetisches Prinzip. Dtsch Med Wochenschr 80: 1449

    Article  PubMed  CAS  Google Scholar 

  • Fraser RJ, Horowitz M, Maddox AF, Harding PE, Chatterton BE, Dent J (1990) Hyperglycemia slows gastric emptying in type 1 (insulin dependent) diabetes mellitus. Diabetologia 33: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, Mac Kay P, Shymko R, Carr RD (1998) Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 47: 345–351

    Article  PubMed  CAS  Google Scholar 

  • Ghazzi M, Radke-Mitchell L, Venable T, The Troglitazone Study group, Whitcomb R (1997) Troglitazone improves glycemic control in patients with type 2 diabetes who are not optimally controlled on sulfonylureas. Diabetes 46: 44A

    Google Scholar 

  • Gingliano D, Quatrano A, Consoli G, Minei A, Ceriello A, De Ros N, D’Onofrio F (1993) Metformin for obese, insulin-treated diabetic patients: improvement in glycemic control and reduction of metabolic risk factors. Eur J Clin Pharmacol 44: 107–112

    Article  Google Scholar 

  • Grant PJ (1995) The effects of metformin on cardiovascular risk factors. Diabetes Metab Rev 11: S43–S50

    Article  PubMed  CAS  Google Scholar 

  • Gromada J, Dissing S, Kofod H, Frokjaer-Jensen (1995) Effects of the hypoglycemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cystosolic calcium levels in βTC3 cells and rat pancreatic beta cells. Diabetologia 38: 1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Groop LC (1997) Drug treatment of non-insulin dependent diabetes mellitus. In: Pickup JC, Williams G (eds) Textbook of diabetes. Blackwell Science, Oxford, pp 38.1–38. 18

    Google Scholar 

  • Groop LC, Luzi L, D Fronzo RA, Melander A (1989) Hyperglycemia and absorption of sulphonylurea drugs. Lancet 2: 129–130

    Article  PubMed  CAS  Google Scholar 

  • Gylfe E, Hellman B, Sehlin J, Täljedal IB (1984) Interaction of sulfonylureas with the pancreatic β-cell. Experientia 40: 1126–1134

    Article  PubMed  CAS  Google Scholar 

  • Hanefeld M, Fisher S, Schulze J, Spengler M, Wargenau M, Schollberg K, Fucker K (1991) Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care 14: 732–737

    Article  PubMed  CAS  Google Scholar 

  • Haupt E, Panten U (1997) Die Stellung der Biguanide in der Therapie des Diabetes mellitus. Med Klin 92: 472–479.

    Article  CAS  Google Scholar 

  • Haupt E, Petzoldt R, Schöffling K (1977) Attempted suicide using glibenclamide—also a contribution to the characterization of sulfonylurea effect. Dtsch Med Wochenschr 102: 1070–1072

    PubMed  CAS  Google Scholar 

  • Haupt E, Knick B, Koschinski, Liebermeister H, Schneider J, Hirche H (1991) Oral antidiabetic combination therapy with sulphonylureas and metformin. Diabete Metab 17: 224–231

    PubMed  CAS  Google Scholar 

  • Hellman B, Sehlin J, Täljedal I-B (1984) Glibenclamide is exceptional among hypoglycaemic sulphonylureas in accumulating progressively in B-cell rich pancreatic islets. Acta Endocrinol 150: 385–390

    Google Scholar 

  • Henquin JC (1980) Tolbutamide stimulation and inhibition of insulin release: studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151–160

    Article  PubMed  CAS  Google Scholar 

  • Henquin JC (1987) Regulation of insulin release by ionic and electrical events in B-cells. Horm Res 27: 168–178

    Article  PubMed  CAS  Google Scholar 

  • Hermann LS (1979) Metformin: a review of its pharmacological properties and therapeutic use. Diabete Metab 5: 233–245

    PubMed  CAS  Google Scholar 

  • Hermann LS, Magnusson S, Möller B, Casey C, Tucker T, Woods HF (1981) Lactic/acidosis during Metformin treatment in all elderly diabetic patient with impaired renal function. Acta Med Scand 209: 519–520

    Article  PubMed  CAS  Google Scholar 

  • Holmann RR, Cull CA, Turner RC (1996) Glycaemic improvement in a double blind trial with acarbose over one year in 1; 946 non-insulin dependent diabetic subjects. Diabetologia 39 Suppl 1: 156, A 44

    Google Scholar 

  • Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI (1998) Efficacy and metabolic effects of metformin and troglitazone in type 2 diabetes mellitus. N Engl J Med 338: 867–672

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto Y, Kuzuya T, Matsuda A, Awata T, Kumakura S, Inooka G, Shiraishi I (1991) Effect of new oral antidiabetic agent CS-045 on glucose tolerance and insulin secretion in patients with NIDDM. Diabetes Care 14: 1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Janbon N, Chaptal J, Vedel A, Schaap J (1942) Accidents hypoglycemiques graves par un sulfamidothiodiazol. Montpellier Med 85: 441

    Google Scholar 

  • Johnston PS, Coniff RF, Hoogwerf BJ, Santiago JV, PI-Sunyer FX, Krol A (1994) Effects of the carbohydrase inhibitor miglitol in sulfonylurea-treated NIDDM patients. Diabetes Care 17: 20–29

    Article  PubMed  CAS  Google Scholar 

  • Kilo C, Miller L, Williamson J (1980) The crux of the UGDP: spurious results and biologically inappropriate data analysis. Diabetologica 18: 179–185

    Article  CAS  Google Scholar 

  • Klepzig, H, Kobert G, Matter C, Luus, H, Schneider H, Boedekert Kh, Kiowski W, Amann FW, Gruber D, Harris S, Burger W (1999) Sulfonylureas and ischaemic preconditioning. Eur Heart J 20: 429–446

    Article  Google Scholar 

  • Knowler WC, Sartor G, Schersten B (1987) Effects of glucose tolerance and treatment of abnormal tolerance on mortality in Malmohus County, Sweden. Abstract no. 280. Diabetologia 30: 541A

    Google Scholar 

  • Kolata G (1979) Controversy over study on diabetes drugs continues for nearly a decade. Science 203: 986–990

    Article  PubMed  CAS  Google Scholar 

  • Kramer W, Müller G, Girbig F, Gutjahr U, Kowalewski, S, Hartz D, Summ HD (1995) The molecular interaction of sulfonylureas with (3-cell ATP-sensitive K+-channels. Diabetes Res Clin Pract 28: S67–S80

    Article  PubMed  CAS  Google Scholar 

  • Krause HP, Ahr HJ (1996): Pharmacokinetics and metabolism of glucosidase inhibitors. In: Kuhlmann J, Puls W (eds) Handbook of experimental pharmacology: oral antidiabetics, Vol. 119. Springer, Berlin, pp 541–555

    Google Scholar 

  • Kroder G, Bossenmaier B, Kellerer M, Capp E, Stoyanov B, Muhlhofer A, Berti L, Horikoshi H, Ullrich A, Häring H (1996) Tumor necrosis factor-alpha-and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling. J Clin Invest 97: 1471

    Article  PubMed  CAS  Google Scholar 

  • Kronsbein P, Joergens V, Muehlhauser I, Scholz V, Venhaus A, Berger M (1988) Evaluation of a structured treatment and teaching programme on non-insulin-dependent diabetes. Lancet 2: 1407–1411

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Boulton AJM, Beck-Nielson H, Berthezene F, Muggeo M, Persson B, Spinas GA, Donoghue S, Lettis S, Stewart-Long P (1996) Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Diabetologia 39: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Bilo HJG (1997) Repaglinide vs glibenclamide: a 14 week efficacy and safety comparison. Diabetologia 40: A321

    Google Scholar 

  • Lebovitz HE (1998) Alpha-glukosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev 6: 132–145

    Google Scholar 

  • Leesar MA, Stoddard M, Ahmed M, Broeadbent J, Bolli R (1997) Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation 95: 2500–2507

    PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith OTA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma ( PPAR Gamma ). J Biol Chem 270: 12953

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz G, Cerasi E (1995) Sulphonylurea treatment of NIDDM patients with cardiovascular disease—a mixed blessing? Diabetologia 39: 503–514

    Article  Google Scholar 

  • Liebl A, Renner R, Hepp D (1998) Metformin-Insulin-Kombinationstherapie and Insulin-Monotherapie bei Typ 2-Diabetes. Diabetes and Stoffwechsel 7 Suppl 1: 68–69

    Google Scholar 

  • Lindström TH, Arnqvist HJ, von Schenck HH (1992) Effect of conventional and intensified insulin therapy on free-insulin profiles and glycemic control in NIDDM. Diabetes Care 15: 27–34

    Article  PubMed  Google Scholar 

  • Loubatières A (1946) Etude physiologique et pharmacodynamique de certains dérivés sulfamidés hypoglycémiants. Arch Int Physiol 54: 174

    Article  Google Scholar 

  • Luft D, Schmülling RM, Eggstein M (1978) Lactic acidosis in biguanide-treated diabetics. Diabetologia 14: 75–87

    Article  PubMed  CAS  Google Scholar 

  • Luger A (1999) Sulfonylharnstofftherapie ohne Gewichtszunahme, Jatros Diabetes Stoffwechsel 2: 2–7

    Google Scholar 

  • Malaisse WJ (1995) Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res 27: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Lebrun P (1990) Mechanism of sulfonylurea-induced insulin release. Diabetes Care 13: 9–17

    Article  PubMed  Google Scholar 

  • Malmberg K for the DIGAMI study group (1997) Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 314: 1512–1515

    Google Scholar 

  • Malmberg K, Norhammar A, Wedel H, Ryden L (1999) Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction ( DIGAMI) study. Circulation 99: 2626–2632

    PubMed  CAS  Google Scholar 

  • Massi-Benedetti M, Herz M, Pfeiffer C (1996) The effects of acute exercise on metabolic control in type 2 diabetic patients treated with glimepiride or glibenclamide. Horm Metab Res 28: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Matthaei S, Hamann A, Klein HH, Benecke H, Kreymann G, Flier JS, Greten S (1991) Association of Metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40: 850–857

    Article  PubMed  CAS  Google Scholar 

  • May C (1995) Wirksamkeit and Verträglichkeit von einschleichend dosierter Acarbose bei Patienten mit nicht insulinpflichtigem Diabetes mellitus unter Sulfonylharnstofftherapie. Diabetes and Stoffwechsel 4: 3–8

    Google Scholar 

  • Mehnert H, Seitz W (1958) Weitere Ergebnisse der Diabetesbehandlung mit blutzuckersenkenden Biguaniden. Munch Med Wochenschr 100: 1849–1851

    PubMed  CAS  Google Scholar 

  • Meisheri KD, Khan SA, Martin JL (1993) Vascular pharmacology of ATP-sensitive K-channels: interactions between glyburide and K-channel-openers. J Vasc Res 30: 2–12

    PubMed  CAS  Google Scholar 

  • Misbin RI, Green L, Stadel BV, Gueriguian JL, Gubbi A, Fleming GA (1998) Lactic acidosis in patients with diabetes treated with metformin. N Engl J Med 338: 265–266

    Article  PubMed  CAS  Google Scholar 

  • Moses R, Slobodniuk R, Boyages S, Colagiuri S, Kidson W, Carter J, Donelly T, Moffitt P, Hopkins H (1997) Additional treatment with repaglinide provides significant improvement in glycemic control in NIDDM patients poorly controlled on metformin. 57th Scientific Sessions of the American Diabetes Association, Boston, Mass, USA. Diabetologia 40: A322

    Google Scholar 

  • Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J (1994) Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 331: 1188–1193

    Article  PubMed  CAS  Google Scholar 

  • Panten U, Schwanstecher M, Schwanstecher C (1996) Sulfonylurea receptors and mechanism of sulfonylurea action. Exp Clin Endocrinol Diabetes to 4: 1–9

    Article  Google Scholar 

  • Persson G (1977) Cardiovascular complications in diabetics and subjects with reduced glucose tolerance. Acta Med Scand 205: 239–245

    Google Scholar 

  • Puls W (1982) Pharmakologie der Acarbose. Med Welt 33: 1647–1652

    CAS  Google Scholar 

  • Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeld W (1995) Glucagon like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. Scand J Gastroenterol 30: 892

    Article  PubMed  CAS  Google Scholar 

  • Rosak C, Schwarz O, Althoff PH, Schöffling K, Schmidt FH (1985) Kombinierte Behandlung von Typ 2-Diabetikern mit Insulin and Glibenclamid nach Tablettenversagen. Dtsch Med Wochenschr 110: 1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Rosak C, Nitzsche G, König P, Hofmann U (1995) The effect of timing and the administration of acarbose on postprandial hyperglycaemia. Diabet Med 12: 979–984

    Article  PubMed  CAS  Google Scholar 

  • Rosak C, Dunzendorfer T, Hofmann U (1996) Diabetes mellitus. In: Rietbrock, Staib, Loew (Hrsg) Klinische Pharmakologie, 3. Auflage. Steinkopf, Darmstadt, pp 608–650

    Google Scholar 

  • Rosenkranz B (1996) Pharmacokinetik basics for the safety of glimepiride in risk group of NIDDM patients. Horm Metab Res 28: 434–439

    Article  PubMed  CAS  Google Scholar 

  • Ruiz CL, Silva LL, Libenson L (1930) Contribution al estudio sobre la compocision guimica de la insulina. Estudio de algunos cuerpos sinteticos sulurados con accion hipoglicemiante. Rev Soc Argent Biol 6: 134

    CAS  Google Scholar 

  • Santensanio F, Ventura MM, Contandini S, Compagnucci P, Moriconi V, Zaccarini P (1993) Efficacy and safety of two different doses of acarbose in non-insulin-dependent diabetic patients treated by diet alone. Diabetes Nutr Metab 6: 147–154

    Google Scholar 

  • Sartor G, Schersten B, Carlström S, Melander A, Norden A, et al., (1980) Ten-year-follow-up of subjects with impaired glucose tolerance: prevention of diabetes by tolbutamide and diet regulation. Diabetes 29: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Schatz H, Steinle D, Pfeiffer EF (1977) Long-term actions of sulfonylureas on (Pro-) insulin biosynthesis and secretion. 1. Lack of evidence for a compensatory increase in (pro-) insulin biosynthesis after exposure of isolated pancreatic rat islets to tolbutamide and glibenclamide in vitro. Horm Metab Res 9: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Schatz H, Laube H, Sieradzki J, Kamenisch W, Pfeiffer EF (1978) Long-term actions of sulfonylureas an (pro-) insulin biosynthesis and secretion. II. Studies after administration of tolbutamide and glibenclamide to rats in vivo. Horm Metab Res 10: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Schatz H, Mark M, Ammon HPT (1986) Antidiabetika: Diabetes mellitus and Pharmakotherapie. Medizinisch pharmakologisches Kompendium. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Schernthaner G (1993) Kritische Analyse der antidiabetischen Therapie mit Metformin: Stoffwechselwirkungen, antiatherogene Effekte and Kontraindikationen. Acta Endokrinol Stoffwechsel 13: 44–50

    Google Scholar 

  • Schmid-Antomarchi H, De Weille J, Fosset M, Lazdunski M (1987) The receptor for antidiabetic sulphonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 262: 15840–15844

    PubMed  CAS  Google Scholar 

  • Schneider J (1996) An overview of the safety and tolerance of glimepiride. Horm Metab Res 28: 413

    Article  PubMed  CAS  Google Scholar 

  • Schor S (1971) The university group diabetes program: a statistician looks at the mortality results. J Am Med Assoc 217: 1673–1675

    Article  Google Scholar 

  • Schwarz ER, Whyte WS, Kloner RA (1997) Ischemic preconditioning. Curr Opin Cardiol 12: 475–481

    PubMed  CAS  Google Scholar 

  • Segal P, Feig PU, Schernthaner G, Ratzmann KP, Ryska J, Petzinna D, Berlin C (1997) The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 20: 687–691

    Article  PubMed  CAS  Google Scholar 

  • Seltzer H (1972) A summary of criticisms of the findings and conclusions of the university group diabetes program (UGDP). Diabetes 21: 976–979

    PubMed  CAS  Google Scholar 

  • Siconolfi-Baez L, Banerji MA, Lebovitz HE (1990) Characterization and significance of sulfonylurea receptors. Diabetes Care 13: 2–8

    PubMed  Google Scholar 

  • Sirtori CR, Lovati MR, Franceschini G (1985) Management of lipid disorders and prevention of artherosclerosis with metformin. In: Krans HMJ (ed) Diabetes and metformin. A research and clinical update. RSM International congress and symposium series, 79; London: R Soc Med, pp 33–44

    Google Scholar 

  • Smits P, Thien T (1995) Cardiovascular effects of sulphonylurea derivatives. Implications for the treatment of NIDDM? Diabetologia 38: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Stenman S, Melander A, Groop PH, Groop L (1993) What is the benefit of increasing the sulfonylurea dose? Ann Intern Med 118: 169–172

    PubMed  CAS  Google Scholar 

  • Sterne J (1957) Du noveau dans le antidiabetiques, la NN dimethylamino guanyl guanidine (NNDG). Maroc Med 36: 1295–1296

    Google Scholar 

  • Stumvoll M (1998) Troglitazone. Diabetes and Stoffwechsel 7: 136–143

    Google Scholar 

  • Suter SL, Nolan JJ, Wallace P, Gumbiner B, Olefsky JM (1992) Metabolic effects of new oral hypoglycemic agent CS o-45 in NIDDM subjects. Diabetes Care 15: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Tafuri SR (1996) Troglitazone enhances differentiation, basal glucose uptake, and Glut 1 protein levels in 3T3–L1 adipocytes. Endocrinology 137: 4706

    Article  PubMed  CAS  Google Scholar 

  • Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA (1995) Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 270: 28183

    Article  PubMed  CAS  Google Scholar 

  • Toeller M (1991) Inhibitors of alpha-glucosidase. Journ Annu Diabetol Hotel Dieu 1991: 203–212

    Google Scholar 

  • Tomai F, Crea F, Gaspardone A, Versaci F, Esposito C, Chiariello L, Gioffre PA (1993) Mechanisms of cardiac pain during coronary angioplasty. Am Coll Cardiol 22: 1892–1869

    Article  CAS  Google Scholar 

  • Tomai F, Crea F, Gaspardone A, Versaci F, DePaulis R, Penta de Peppo A, Chiariello L, Gioffre PA (1994) Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 90: 700–705

    CAS  Google Scholar 

  • Tomkin GH, Hadden DR, Weaver JA, Montgomery DAD (1971) Vitamin B12 status of patients on long term metformin therapy. BMJ 2: 685–687

    Article  PubMed  CAS  Google Scholar 

  • Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF (1981) Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 12: 235–246

    PubMed  CAS  Google Scholar 

  • UKPDS 13 (1995) Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ 310: 83–88

    Google Scholar 

  • UKPDS 16 (1995) Overview of 6 years’ therapy of type 2 diabetes: a progressive disease. Diabetes 44: 1249–1258

    Article  Google Scholar 

  • UKPDS 24 (1998a) A 6 year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med 128: 3

    Google Scholar 

  • UKPDS 28 (1998b) A randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 Diabetes. Diabetes Care 21: 1

    Google Scholar 

  • UKPDS 34 (1998c) Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 352: 854–865

    Article  Google Scholar 

  • Ungar G, Freedman L, Shapiro S (1957) Pharmocological studies of a new oral hypoglycemic drug. Proc Soc Exp Biol Med 95: 190–192

    PubMed  CAS  Google Scholar 

  • Valiquett T, Balagtas C, Whitcomb R (1996) Troglitazone dose-response study in patients with NIDDM (Abstract). Diabetes 44: 109A

    Google Scholar 

  • Vidon N, Chaussade S, Noel M, Franchisseur C, Huchet B, Bernier JJ (1988) Metformin in the digestive tract. Diabetes Res Clin Pract 4: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K (1918) Studies in the metabolic changes induced by administration of guanide bases. I. Influence of injected guanidine hydrochloride upon blood sugar content. J Biol Chem 33: 253–265

    CAS  Google Scholar 

  • Widén EIM, Eriksson JG, Groop LC (1992) Metformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM. Diabetes 41: 54–358

    Article  Google Scholar 

  • Wolffenbuttel BHR, Nijst L, Sels JPJE, Menheere PPCA, Müller PG (1993) Effects of a new oral hypoglycemic agent, repaglinide, an metabolic control in sulphonylurea-treated patients with NIDDM. Eur J Clin Pharmacol 45: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Yki-Järvinen H (1990) Acute and chronic effects of hyperglyce- mia and glucose metabolism. Diabetologia 33: 579–585

    Article  PubMed  Google Scholar 

  • Yki-Järvinen H, Nikkilä K, Ryysy I, Tulokas T, Vanamo R, Heikkilä M (1997) New thoughts of insulin therapy in type 2 diabetes. 16th international diabetes federation congress. Abstracts of the state of the art lectures and symposia. Helsinki, Finland Springer, Berlin

    Google Scholar 

  • Yki-Järvinnen H, Ryysy I, Nikkilä K, Tulokas T, Vanamo R, Heikkilä M (1999) Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. Ann Intern Med 130: 389–396

    Google Scholar 

  • Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (1988) Concentration dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP- regulated K+ currents in pencreatic B-cells. Naunyn Schmiede-berg’s Arch Pharma 337: 225–230

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosak, C. (2001). Pharmakotherapie des Diabetes mellitus Typ 2. In: Böhm, B.O., Palitzsch, KD., Rosak, C., Spinas, G.A. (eds) Klinische Diabetologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59539-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59539-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64016-2

  • Online ISBN: 978-3-642-59539-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics