Skip to main content

A Novel Strategy in the Elimination of Disseminated Melanoma Cells: Chimeric Receptors Endow T Cells with Tumor Specificity

  • Conference paper
Minimal Residual Disease in Melanoma

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 158))

Abstract

The application of immunotherapy to the treatment of micrometastases of melanoma has attracted growing interest in recent years. This trend reflects, at least in part, the disappointing results of conventional chemotherapy, the identification of melanoma-associated antigens suitable to be used as targets for immunotherapy, and the significant progress in our understanding of molecular processes involved in the development of an immune response. Because of the general belief that T cell immunity plays a major part in the control of tumor growth, we have recently applied a novel strategy to target cytolytic T cells to melanoma cells. The strategy bypasses the requirement of presentation of melanoma-associated-antigen-derived peptides by the major histocompatibility complex to the T cell receptor complex by permanent grafting of T cells with a recombinant, chimeric T cell receptor. The extracellular moiety of the grafted receptor contains the antigen-binding domain, consisting of a single-chain antibody fragment (scFv) derived from a monoclonal antibody specific for the high-molecular-weight melanoma-associated antigen (HMW-MAA). The intracellular receptor moiety contains the cellular activation domain, consisting of the γ-signaling chain derived from the FcεRI receptor. Cytotoxic T cells grafted with the chimeric anti-HMW-MAA scFv-γ signaling receptor specifically lyse HMW-MAA-positive melanoma cells in a human leukocyte antigen class I-independent fashion. The chimeric T cell receptor strategy is designed to eliminate disseminated tumor cells by the power of cytolytic T cells that physiologically penetrate tissues and that are specifically activated by the grafted receptor after binding to antigen-positive melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abken H, Hombach A, Reinhold U, Ferrone S (1998) Can combined T-cell-and antibody-based immunotherapy outsmart tumor cells? Immunol Today 19: 2–5

    Article  PubMed  CAS  Google Scholar 

  • Bajorin DF, Chapman PB, Wong G, Coit DG, Kunicka J, Dimaggio J, Cordon-Cardo C, Urmacher C, Dantes L, Templeton MA, Liu J, Oettgen HF, Houghton AN (1990) Phase I evaluation of a combination of monoclonal antibody R24 and interleukin-2 in patients with metastatic melanoma. Cancer Res 50: 7490–7495

    PubMed  CAS  Google Scholar 

  • Barnhill RL, Piepkorn MW, Alistair JC, Flynn E, Karaoli T, Folkman J (1998) Tumor vascularity, proliferation, and apoptosis in human melanoma micrometastases and macrometastases. Arch Dermatol 134: 991–994

    Article  PubMed  CAS  Google Scholar 

  • Becker IC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996a) T-cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin-2 therapy. J Exp Med 183: 2361–2366

    Article  PubMed  CAS  Google Scholar 

  • Becker JC, Varki NM, Gillies SD, Furukawa K, Reisfeld RA (1996b) An antibody-interleukin2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc Natl Acad Sci USA 93: 7826–7831

    Article  PubMed  CAS  Google Scholar 

  • Boon T, Cerottini J-C, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Ann Rev Immunol 12: 337–365

    Article  CAS  Google Scholar 

  • Coulie PG, Ikeda H, Baurain J-F, Chiari R (1999) Antitumor immunity at work in a melanoma patient. Adv Cancer Res 76: 213–242

    Article  PubMed  CAS  Google Scholar 

  • Crowley N, Seigler H (1992) Relationship between disease-free interval and survival in patients with recurrent melanoma. Arch Surg 127: 1303–1308

    PubMed  CAS  Google Scholar 

  • Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the y or S subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90: 720–724

    Article  PubMed  CAS  Google Scholar 

  • Ferrone S, Marincola FM (1995) Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16: 487–494

    Article  PubMed  CAS  Google Scholar 

  • Ferrone S, Temponi M, Gargiulo D, Scasselat GA, Cavaliere R, Ratali PG (1988) Selection and utilization of monoclonal antibody defined melanoma associated antigens of immunoscintigraphy in patients with melanoma. In: Srivastava SC (ed), Radiolabeled Monoclonal Antibodies for Imaging and Therapy. Plenum Press, New York, London

    Google Scholar 

  • Goverman J., Gomez SM, Segesman KD, Hunkapiller T, Lang WE, Hood L (1990) Chimeric immunoglobulin-T-cell receptor complex formation and activation. Cell 60: 929–939

    Article  PubMed  CAS  Google Scholar 

  • Guerry DP, Schuchter LM (1992) Disseminated melanoma–is there a new standard therapy? N Engl J Med 327: 560–561

    Article  PubMed  Google Scholar 

  • Hekele A, Dall P, Moritz D (1996) Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv:zeta-chimera. Int J Cancer 68: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Kruis W, Pohl C, Abken H (1997) Specific T cell targeting of TAG72+ gastrointestinal tumor cells by a chimeric receptor with antibody-like specificity. Gastroentereology 113: 1163–1170

    Article  CAS  Google Scholar 

  • Hombach A, Heuser C, Sircar T, Tillmann T, Diehl V, Pohl C, Abken H (1998a) An antiCD30 chimeric receptor that mediates CD3-zeta independent T-cell activation against Hodgkin’s lymphoma cells in presence of soluble CD30. Cancer Res 58: 1116–1119

    PubMed  CAS  Google Scholar 

  • Hombach A, Koch D, Sircar R, Heuser C, Diehl V, Kruis W, Pohl C, Abken H (1999) A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in presence of soluble CEA. Gene Ther 6: 300–304

    Article  PubMed  CAS  Google Scholar 

  • Hombach A, Pohl C, Heuser C, Sircar R, Diehl V, Abken H (1998b) Isolation of single chain antibody fragments with specificity for cell surface antigens by phage display utilizing internal image anti-idiotypic antibodies. J Immunol Meth 218: 53–61

    Article  CAS  Google Scholar 

  • Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, Rosenberg SA, Eshhar Z (1993) Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor y chain. J Exp Med 178: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, Rosenberg SA (1995) In vivo antitumor activity of T cells redirected with chimeric antibody/T cell receptor genes. Cancer Res 55, 3369–3373

    PubMed  CAS  Google Scholar 

  • Irie RF, Morton DL (1986) Regression of cutaneous metastatic melanoma was observed by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc Natl Acad Sci USA 83: 8694–8698

    Article  PubMed  CAS  Google Scholar 

  • Joshi SS, Kessinger A, Mann SL, Stevenson M, Weisenburger DD, Vaughan WP, Armitage JO, Sharp JG (1987) Detection of malignant cells in histologically normal bone marrow using culture techniques. Bone Marrow Transplant 1: 311–315

    Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 5: 677–685

    Article  PubMed  CAS  Google Scholar 

  • Levey DL, Srivastava PK (1996) Alterations in T cells of cancer-bearers: whence specificity? Immunol Today 17: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins R, Parmiani G, Storkus WJ, Lotze MT (1996) Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 98: 1633–1641

    Article  PubMed  CAS  Google Scholar 

  • Maeurer MJ, Storkus WJ, Krikwood JM, Lotze MT (1996) New treatment options for patients with melanoma: review of melanoma-derived T cell epitope-based peptide vaccines. Melanoma Res 6: 11–24

    Article  PubMed  CAS  Google Scholar 

  • Maio M, Parmiani G (1996) Melanoma immunotherapy: new dreams or solid hopes? Immunol Today 17: 405–407

    Article  PubMed  CAS  Google Scholar 

  • Moritz D, Wels W, Mattem J, Groner B (1994) Cytotoxic T lymphocytes with a grafted recognition specificcity for ErbB2-expressing tumor cells. Proc Natl Acad Sci USA 91: 4318–4322

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TD, Smith MJ, Hersey P (1997) Contrasting effects of T cell growth factors on T cell responses to melanoma in vitro. Cancer Immunol Immunother 43: 345–354

    Article  PubMed  CAS  Google Scholar 

  • Piepkorn M, Barnhill RL (1996) A factual, not arbitrary, basis for choice of resection margins in melanoma. Arch Dermatol 132: 811–814

    Article  PubMed  CAS  Google Scholar 

  • Piepkorn M, Weinstock MA, Barnhill RL (1997) Theoretical and empirical arguments in relation to elective lymph node dissection for melanoma. Arch Dermatol 133: 995–1002

    Article  PubMed  CAS  Google Scholar 

  • Reinhold U, Liu L, Lüdtke-Handjery H-C, Heuser C, Hombach A, Wang X, Tilgen W, Ferrone S, Abken H (1999) Specific lysis of melanoma cells by receptor grafted T cells is enhanced by anti-idiotypic monoclonal antibodies directed to the scFv domain of the receptor. J Invest Dermatol 112: 744–750

    Article  PubMed  CAS  Google Scholar 

  • Reinhold U, Lüdtke-Handjery H-C, Schnautz S, Kreysel H-W, Abken H (1997) The analysis of tyrosinase-specific mRNA in blood samples of melanoma patients by RT-PCR is not a useful test for metastatic tumor progression. J Invest Dermatol 108: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Packard BS, Aebersold PM, Soloman D, Topalian SL, Toy ST, Simon P, Lotze MT, Yong JC, Seipp CA, Simpson C, Carter C, Bock S, Schwartzentruber D, Wie JP, White DE (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319: 1676–1680

    Google Scholar 

  • Rosenberg SA, Yannelli JR; Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin-2. J Natl Cancer Inst 86: 1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Schadendorf D, Worm M, Algermissen B, Kohlmus CM, Czarnetzki BM (1994) Chemosensitivity testing of human melanoma cells: retrospective analysis of clinical response and in vitro drug sensitivity. Cancer 73: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Seliger B, Maeurer MJ, Ferrone S (1997) TAP off-tumors on. Immunol Today 18: 292–299

    Article  PubMed  CAS  Google Scholar 

  • Serrone L, Hersey P (1999) The chemoresistance of human malignant melanoma: an update. Melanoma Res 9: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Stancovski I, Schindler DG, Waks T, Yarden Y, Sela M, Eshhar Z (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 151: 6577–6582

    PubMed  CAS  Google Scholar 

  • Weijtens MEM, Willemsen RA, Valerio D, Stam K, Bolhuis RLH (1996) Single chain Ig/g gene-redirected human T lympocytes produce cytokines, specifically lyse tumour cells, and recycle lytic capacity. J Immunol 157: 836–843

    PubMed  CAS  Google Scholar 

  • Wirthmüller U, Kurosaki T, Murakami MS, Ravetch JV (1992) Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain. J Exp Med 175: 1381–1390

    Article  Google Scholar 

  • Yee C, Riddell SR, Greenberg PD (1996) Prospects for adoptive T cell therapy. Curr Opin Immunol 9: 702–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Abken, H., Hombach, A., Heuser, C., Reinhold, U. (2001). A Novel Strategy in the Elimination of Disseminated Melanoma Cells: Chimeric Receptors Endow T Cells with Tumor Specificity. In: Reinhold, U., Tilgen, W. (eds) Minimal Residual Disease in Melanoma. Recent Results in Cancer Research, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59537-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59537-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64015-5

  • Online ISBN: 978-3-642-59537-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics