Skip to main content

Rapid Cycle Real-Time PCR: Methods and Applications

  • Chapter
Rapid Cycle Real-Time PCR

Abstract

The heat stable polymerase, Thermus aquaticus, was first reported for use in the polymerase chain reaction in 1988 (1). Instead of adding the polymerase each cycle, only one addition of enzyme was needed at the beginning of PCR. Once all reaction components were combined, amplification could proceed automatically merely by temperature cycling the sample. Of course, automated thermal cyclers were not available yet, so most laboratories experienced a new incarnation of monotony, the repetitive manual transfer of PCR samples between 3 different water baths. It was clear that there must be a better way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–91.

    Article  PubMed  CAS  Google Scholar 

  2. Wittwer CT, GC Fillmore, DR Hillyard (1989). Automated polymerase chain reaction in capillary tubes with hot air. Nucl. Acids Res. 17: 4353–4357.

    Google Scholar 

  3. Wittwer CT, GC Fillmore, DJ Garling. Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Anal. Biochem. 186: 328–331, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Wittwer, CT and DJ Garling. Rapid Cycle DNA Amplification. BioTechniques, 10: 76–83, 1991.

    CAS  Google Scholar 

  5. Wittwer, CT, BC Marshall, GB Reed, JL Cherry. Rapid cycle allele-specific amplification: studies with the cystic fibrosis ?F508 locus. Clinical Chemistry, 39: 804–809, 1993.

    PubMed  CAS  Google Scholar 

  6. Wittwer, CT, GB Reed and KM Ririe. Rapid cycle DNA amplification. In K Mullis, F Ferre and R Gibbs (Eds.), The polymerase chain reaction. Springer-Verlag, Deerfield Beach, FL, pp 174–181, 1994.

    Chapter  Google Scholar 

  7. Wittwer CT and MG Herrmman. Rapid thermal cycling and PCR kinetics, in PCR Methods Manual (Innis M, D Gelfand, and J. Sninsky, eds.), Academic Press, San Diego, 211–229, 1999.

    Google Scholar 

  8. Brown RA, MJ Lay, and CT Wittwer. Rapid cycle amplification for construction of competitive templates, in Genetic Engineering with PCR, (Horton, RM and RC Tait, eds.), Horizon Scientific Press, Norfolk, England, 57–70, 1998.

    Google Scholar 

  9. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413–7, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026–30, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Wittwer CT, MG Herrmann, AA Moss, RP Rasmussen. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques, 22: 130–138, 1997.

    CAS  Google Scholar 

  12. Wittwer CT, KM Ririe, RV Andrew, DA David, RA Gundry, UJ Balis. The LightCycler: a microvolume, multisample fluorimeter with rapid temperature control. BioTechniques, 22: 176–181, 1997.

    CAS  Google Scholar 

  13. Wittwer CT, K Ririe, R. Rasmussen. Fluorescence monitoring of rapid cycle PCR for quantification, in Gene Quantification, Ferre, E, ed., Birkhauser, New York, 129–144, 1998.

    Chapter  Google Scholar 

  14. Morrison TB, J) Weis, and CT Wittwer. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques, 954–962, 1998.

    Google Scholar 

  15. Bay S, CT Wittwer, TC King, KSJ Elelitoba-Johnson. Fluorescence melting curve-based analysis for the detection of the bcl-1/JH translocation in mantle cell lymphoma. Lab. Invest. 79: 337–345, 1999.

    Google Scholar 

  16. Pritham GH and CT Wittwer. Continuous fluorescent monitoring of PCR. J. Clin. Lig. Assay, 21 (4): 404–412, 1998.

    Google Scholar 

  17. Lay MJ and CT Wittwer. Real-time fluorescence genotyping of factor V Leiden during rapid cycle PCR. Clin. Chem. 43: 12, 2262–2267, 1997.

    PubMed  CAS  Google Scholar 

  18. Bernard PS, MJ Lay, CT Wittwer. Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal. Biochem., 255: 101–107, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Bernard PS, RS Ajioka, JP Kushner, and CT Wittwer. Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. Am. J. Pathol., 153: 1055 1061, 1998.

    Google Scholar 

  20. Lyon E,A Millson, T Phan, and CT Wittwer. Detection of base alterations within the region of factor V Leiden by fluorescent melting curves. Mol. Diag., 3: 203–210, 1998.

    Article  CAS  Google Scholar 

  21. Ririe KM, RP Rasmussen, and CT Wittwer. Product differentiation by analysis DNA melting curves during the polymerase chain reaction. Anal. Biochem, 245: 154–160, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acid. Sci. USA, 95: 1460–1465, 1998.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wittwer, C. (2001). Rapid Cycle Real-Time PCR: Methods and Applications. In: Meuer, S., Wittwer, C., Nakagawara, KI. (eds) Rapid Cycle Real-Time PCR. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59524-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59524-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66736-0

  • Online ISBN: 978-3-642-59524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics