Skip to main content

Neurochemistry: The Basis of Psychopharmacology

  • Chapter
Contemporary Psychiatry
  • 35 Accesses

Abstract

For ages, man has taken psychic comfort in the effects of drugs such as alcohol, morphine and cocaine. However, it was not until the 1950s that drugs became available with a demonstrated efficacy in the treatment of psychiatric disorders such as schizophrenia and depression. Attempts to understand the mechanisms of action for these drugs have been essential in the development of modern concepts in biological psychiatry. For example, the dopamine (DA) hypothesis of schizophrenia largely derives from experiments showing that antipsychotic drugs such as haloperidol and chlorpromazine affect the metabolism of DA but not other neurotransmitters (although at the time this hypothesis was formulated in the early 1960s, there were relatively few “other” neurotransmitters). Roles for norepinephrine (NE) and serotonin (5-HT) in depression developed from the observation that reser-pine produces a “depressed” behavior in rodents and humans which is associated with the depletion of these transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist RP (1948) A study of the adrentropic receptors. Am J Physiol 153: 586–600

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Siggins GK (1994) Electrophysiology. In: Bloom FE (ed) Psychopharmacology: fourth generation of progress. Raven, New York, pp 95–110

    Google Scholar 

  • Awapara J, Landua A, Fuerst R, Seale B (1950) Free gamma-aminobutyric acid in brain. J Biol Chem 187: 35–39

    PubMed  CAS  Google Scholar 

  • Bell DS (1973) The experimental reproduction of amphetamine psychosis. Arch Gen Psych 29: 35–40

    Article  CAS  Google Scholar 

  • Bjorklund A, Ehinger B, Falck B (1968) A method for differentiating dopamine from norepinephrine in tissue sections by microspectrofluorometry. J Histochem Cytochem 16: 243–257

    Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK et al (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336: 783–787

    Article  PubMed  CAS  Google Scholar 

  • Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 2: 349–352

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and nor-metaonephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144

    Article  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotlransmitter imbalance syndrome. Schiz Bull 16: 425–432

    Article  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1975) Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci 17: 993–1002

    Article  CAS  Google Scholar 

  • Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 6: 147–190

    CAS  Google Scholar 

  • Dale HH (1935) Pharmacology and nerve endings. Proc R Soc Med 28: 319–332

    PubMed  CAS  Google Scholar 

  • Emrich HM, Kissling W, Fischler M, Zerssen DV, Riedhammer H, Edel HH (1979) Hemodialysis in schizophrenia: three failures with chronic patients. Am J Psychiatry 136: 1095

    PubMed  CAS  Google Scholar 

  • Florey E (1953) Über einen nervösen Hemmungsfaktor in Gehirn und Rückenmark. Naturwissenschaften 40: 295–296

    Article  CAS  Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M et al (1997) Linkage of a neuropsychological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94: 587–592

    Article  PubMed  CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12: 323–328

    CAS  Google Scholar 

  • Heimer L (1983) The human brain and spinal cord. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hoffmann BB, Lefkowitz RJ, Taylor P (1996) Neurotransmission: the autonomic and somatic nervous systems. In: Hardman JG, Limbird LE (eds) The pharmacological basis of therapeutics. McGraw-Hill, New York, pp 105–140

    Google Scholar 

  • Hughes J, Smith W, Kosterlitz HW, Fothergill LH, Morgan GH, Morris HR (1975) Identification of two related pentapeptides from brain with potent opiate agonist activity. Nature 258: 577

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (1991) Cellular mechanisms of learning and the zbiological basis of individuality. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. Appleton and Lange, New York, pp 1009–1040

    Google Scholar 

  • Kanes S, Dains K, Cipp L, Gattey J, Hitzemann B, Rasmussen E, Larderson S, Silverman M, Hitzemann R (1996) Mapping the genes for halperidol induced catalepsy. J Pharmacol Exp Ther 277: 1016–1025

    PubMed  CAS  Google Scholar 

  • Kaplan HI et al (1991) Synopsis of psychiatry. Williams & Wilkins, New York

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptor for dopamine. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Kline N (1958) Clinical experience with iproniozid. J Clin Exp Psychopathol 19[Suppl l]:72–78

    PubMed  CAS  Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride). Am J Psychiatry 115: 459–464

    PubMed  CAS  Google Scholar 

  • Langley JN (1901) Observations on the physiological action of extracts of the suprarenal bodies. J Physiol (Lond) 27: 937–956

    Google Scholar 

  • Lewandowsky M (1898) Über eine Wirkung des Nebennieren-extractes auf das Auge. Zentralbl Physiol 12: 599–600

    Google Scholar 

  • Loewi O (1921) Über humorale Übertragbarkeit der Herzner-venwirkung. Pflugers Arch 189: 239–242

    Article  Google Scholar 

  • Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. Mitteilung. Über das Schicksal des Vagusstoff. Pflugers Arch Ges Physiol 214: 678–688

    CAS  Google Scholar 

  • Mesulam MM, Geula C (1994) Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex. Brain Res Bull 33: 137–153

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10: 1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Moreau de Tours JJ (1845) Du haschisch et de l’aberration mentale: études psychologiques. Masson, Paris, p 428

    Google Scholar 

  • Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187: 55–63

    PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15: 264–274

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72: 4376–4380

    Article  PubMed  CAS  Google Scholar 

  • Spano PF, Govoni S, Trabucchi M (1978) Similarities and dissimilarities between dopamine and neuroleptic receptors: further evidence for type 1 and type 2 dopamine receptors in the CNS. Adv Biochem Psychopharmacol 19: 155–165

    PubMed  CAS  Google Scholar 

  • Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Book  Google Scholar 

  • Stoll A, Hoffmann A (1943) Helv Chem Acta 26: 944

    Article  CAS  Google Scholar 

  • Wagemaker H, Cade R (1978) Hemodialysis in chronic schizophrenic patients. South Med J 71: 1463–1465

    Article  PubMed  CAS  Google Scholar 

  • Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386: 499–502

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henn, F., Hitzemann, R.J. (2001). Neurochemistry: The Basis of Psychopharmacology. In: Henn, F., Sartorius, N., Helmchen, H., Lauter, H. (eds) Contemporary Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59519-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59519-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64007-0

  • Online ISBN: 978-3-642-59519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics