Skip to main content

Brain Imaging in Psychiatry

  • Chapter
Contemporary Psychiatry

Abstract

Modern in vivo brain imaging, made possible by the major advances in radiology and nuclear medicine over the course of the twentieth century, has led to the formulation of new concepts of brain function and enabled the identification of specific pathological changes in diseases of the central nervous system. For much of its history, the study of brain function depended exclusively on postmortem examination of brain lesions and on the findings of electrophysiological tests. Early maps of brain function were often speculative and based on highly mechanistic assumptions. This approach could yield no more than a rudimentary conception of the modular organization of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren H, Reibring L (1994) PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry 27: 2–6

    Article  PubMed  CAS  Google Scholar 

  • Agren H, Reibring L, Hartvig P et al (1991) Low brain uptake of L-[llC]5-hydroxytryptophan in major depression: a positronemission tomography study on patients and healthy volunteers. Acta Psychiatr Scand 83: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC (1988) Evaluation of brain imaging techniques inmental illness. Annu Rev Med 39: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Andreasen N, Nasrallah HA, Dunn V et al (1986) Structuralabnormalities in the frontal system in schizophrenia.Amagnetic resonance imaging study. Arch Gen Psychiatry 43:136–144

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Carson R, Diksic M et al (1988) Workshop on schizophrenia, PET, and dopamine D2 receptors in thehuman neostriatum. Schizophr Bull 14: 471–484

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Ehrhardt JC, Swayze VW, Alliger RJ, Yuh WT, Cohen G, Ziebell S (1990a) Magnetic resonance imaging ofthe brain in schizophrenia. The pathophysiologic significanceof structural abnormalities. Arch Gen Psychiatry 47: 5–44

    Google Scholar 

  • Andreasen NC, Swayze VW, Flaum M, Yates WR, Arndt S, McChesney C (1990b) Ventricular enlargement in schizophrenia evaluated with computed tomographic scanning.Effects of gender, age, and stage of illness. Arch Gen Psychiatry 47: 1008–1015

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality inneuroleptic-naive patients and in patients with chronicschizophrenia. Assessment with xenon 133 single-photonemission computed tomography and the Tower of London. Arch Gen Psychiatry 49: 943–958

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Flaum M, Swayze V, O’Leary DS, Alliger R, Cohen G, Ehrhardt J, Yuh WT (1993) Intelligence and brainstructure in normal individuals. Am J Psychiatry 150: 130–134

    PubMed  CAS  Google Scholar 

  • Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neurolepticnaive patients. Lancet 349: 1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Aquilonius SM, Bergstrom K, Eckernas SA et al (1987) In vivoevaluation of striatal dopamine reuptake sites using 11C-nomifensine and positron emission tomography. Acta Neurol Scand 76: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Baker SC, Frith CD, Dolan RJ (1997) The interaction betweenmood and cognitive function studied with PET. Psychol Med 27: 565–578

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functionalMRI of the human brain. Magn Reson Med 30: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Bartenstein P, Koepp M (1995) Benzodiazepine receptor imagingwith positron emission tomography and single photonemission tomography. Nervenarzt 66: 412–421

    PubMed  CAS  Google Scholar 

  • Bartha R, Williamson PC, Drost DJ et al (1997) Measurement ofglutamate and glutaminÄ™ in the medial prefrontal cortex ofnever-treated schizophrenic patients and healthy controls byproton magnetic resonance spectroscopy. Arch Gen Psychiatry 54: 959–965

    Article  PubMed  CAS  Google Scholar 

  • Bartlett EJ, Barouche F, Brodie JD, Wolkin A, Angrist B, Rotrosen J, Wolf AP (1991a) Stability of resting deoxyglucosemetabolic values in PET studies of schizophrenia. Psychiatry Res 40: 11–20

    Article  PubMed  CAS  Google Scholar 

  • Bartlett EJ, Wolkin A, Brodie JD, Laska EM, Wolf AP, Sanfilipo M (1991b) Importance of pharmacological control in PET studies: effects of thiothixene and haloperidol on cerebralglucose utilization in chronic schizophrenia. Psychiatry Res 40: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Bartlett EJ, Brodie JD, Simkowitz P et al (1998) Effect of ahaloperidolchallengeonregionalbrainmetabolisminneuroleptic-responsive and nonresponsive schizophrenicpatients. Am J Psychiatry 155: 337–343

    PubMed  CAS  Google Scholar 

  • Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987) Local cerebral glucose metabolic rates inobsessive-compulsive disorder. A comparison with rates inunipolar depression and in normal controls. Arch Gen Psychiatry 44: 211–218

    Article  PubMed  Google Scholar 

  • Baxter LR Jr, Schwartz JM, Phelps ME et al (1989) Reduction ofprefrontal cortex glucose metabolism common to three typesof depression. Arch Gen Psychiatry 46: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Baxter LR Jr, Schwartz JM, Bergman KS et al (1992) Caudateglucose metabolic rate changes with both drug and behaviortherapy for obsessive-compulsive disorder. Arch Gen Psychiatry 49: 681–689

    Article  PubMed  CAS  Google Scholar 

  • Behar D, Rapoport JL, Berg CJ (1984) Computerized tomographyand neuropsychological test measured in adolescents withobsessive-compulsive disorder. Am J Psychiatry 141: 363–369

    PubMed  CAS  Google Scholar 

  • Bench CJ, Price GW, Lammertsma AA et al (1991) Measurementof human cerebral monoamine oxidase type B (MAO-B)activity with positron emission tomography (PET): a doseranging study with the reversible inhibitor Ro 19–6327. Eur J Clin Pharmacol 40: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ (1992) The anatomy of melancholia - focal abnormalitiesof cerebral blood flow in major depression. Psychol Med 22:607–615

    Article  PubMed  CAS  Google Scholar 

  • Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ (1993) Regional cerebral blood flow in depression measured bypositron emission tomography: the relationship with clinicaldimensions. Psychol Med 23: 579–590

    Article  PubMed  CAS  Google Scholar 

  • Bennett BA, Wichems CH, Houingsworth CK, Davies HM, Thornley C, Sexton T, Childers SR (1995) Novel 2–substitutedcocaine analogs: uptake and ligand binding studies atdopamine, serotonin and norepinephrine transport sites inthe rat brain. J Pharmacol Exp Ther 272: 1176–1186

    PubMed  CAS  Google Scholar 

  • Bertolino A, Nawroz S, Mattay VS et al (1996) Regionallyspecific pattern of neurochemical pathology in schizophreniaas assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 153: 1554–1563

    PubMed  CAS  Google Scholar 

  • Bertolino A, Callicott JH, Nawroz S et al (1998) Reproducibility ofproton magnetic resonance spectroscopic imaging in patientswith schizophrenia. Neuropsychopharmacology 18: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Biver F, Wilder D, Lotstra F, Damhaut P, Goldman S, Mendlewicz J (1997) Serotonin 5–HT2 receptor imaging in major depression: focal changes in orbito-insular cortex. Br J Psychiatry 171: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Blin J, Sette G, Fiorelli M, Bletry O, Elghozi JL, Crouzel C, Baron JC (1990) A method for the in vivo investigation ofthe serotonergic 5–HT2 receptors in the human cerebralcortex using positron emission tomography and 18F-labeledsetoperone. J Neurochem 54: 1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Braver TS, Cohen JD, Nyström LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefrontal cortex involvement inhuman working memory. Neuroimage 5: 49–62

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Piekar D (1997a) Association of ketamine-induced psychosis with focalactivation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154: 805–811

    PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE et al (1997b) Schizophrenia is associated with elevated amphetamine-inducedsynaptic dopamine concentrations: evidence from a novelpositron emission tomography method. Proc Natl Acad Sci USA 94: 2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Rauch SL (1996) Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioralprobes of cortico-striatal systems and the amygdala. Neuroimage 4: 127–138

    Article  Google Scholar 

  • Breiter HC, Rauch SL, Kwong KK et al (1996) Functionalmagnetic resonance imaging of symptom provocation inobsessive-compulsive disorder. Arch Gen Psychiatry 53:595–606

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ (1996) Functional imaging techniques in the diagnosisof non-Alzheimer dementias. J Neural Transm Suppl 47:155–167

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Wu JC, DeLisi LE, Holcomb HH, Hazlett E, Cooper-Langston K, Kessler R (1987) Positron emission tomography studies of basal ganglia and somato sensorycortex neuroleptic drug effects: differences between normalcontrols and schizophrenic patients. Biol Psychiatry 22:479–494

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Haier RJ, Potkin SG et al (1992a) Frontostriataldisorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49: 935–942

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Potkin SG, Marshall JF et al (1992b) Effects ofclozapine and thiothixene on glucose metabolic rate inschizophrenia. Neuropsychopharmacology 6: 155–163

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Potkin SG, Siegel BV Jr et al (1992c) Striatalmetabolic rate and clinical response to neuroleptics inschizophrenia. Arch Gen Psychiatry 49: 966–974

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L, Reynolds C (1997) Effect of sertraline on regional metabolicrate in patients with affective disorder. Biol Psychiatry 41:15–22

    Article  PubMed  CAS  Google Scholar 

  • Buckley PF, Moore C, Long H et al (1994) IH-magnetic resonancespectroscopy of the left temporal and frontal lobes inschizophrenia: clinical, neurodevelopmental, and cognitivecorrelates. Biol Psychiatry 36: 792–800

    Article  PubMed  CAS  Google Scholar 

  • Buckley PF, Friedman L, Wu D et al (1997) Functional magneticresonance imaging in schizophrenia: initial methodology andevaluation of the motor cortex. Psychiatry Res 74: 13–23

    Article  PubMed  CAS  Google Scholar 

  • Busatto G, Howard RJ, Ha Y et al (1997a) A functional magneticresonance imaging study of episodic memory. Neuroreport 8:2671–2675

    Article  PubMed  CAS  Google Scholar 

  • Busatto GF, Pilowsky LS, Costa DC, Ell PJ, David AS, Lucey JV, Kerwin RW (1997b) Correlation between reduced in vivobenzodiazepine receptor binding and severity of psychoticsymptoms in schizophrenia. Am J Psychiatry 154: 56–63

    PubMed  CAS  Google Scholar 

  • Buschong SC (1996) Magnetic resonance imaging: physical andbiological principles, 2nd edn. Mosby, St Louis

    Google Scholar 

  • Calabrese G, Colombo C, Bonfanti A, Seotti G, Scarone S (1993) Caudate nucleus abnormalities in obsessive-compulsive disorder measurements of MRI signal intensity. Psychiatry Res 50: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Ramsey NF, Tallent K et al (1998) Functionalmagnetic resonance imaging brain mapping in psychiatry:methodological issues illustrated in a study of workingmemory in schizophrenia. Neuropsychopharmacology 18:186–196

    Article  PubMed  CAS  Google Scholar 

  • Chua SE, McKenna PJ (1995) Schizophrenia - a brain disease? Br J Psychiatry 166: 563–582

    Article  PubMed  CAS  Google Scholar 

  • Claus J J, van Harskamp F, Breteler MM et al (1994) Thediagnostic value of SPECT with Tc 99m HMPAO inAlzheimer’s disease: a population-based study. Neurology 44: 454–461

    Article  PubMed  CAS  Google Scholar 

  • Claus JJ, Dubois EA, Booij J et al (1997) Demonstration of areduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emissiontomography. Eur J Nucl Med 24: 602–608

    PubMed  CAS  Google Scholar 

  • Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC (1994) Activation of prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp 1: 293–304

    Article  Google Scholar 

  • Cohen BM, Yurgelun-Todd D, English CD, Renshaw PF (1995) Abnormalities of regional distribution of cerebral vasculaturein schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152: 1801–1803

    PubMed  CAS  Google Scholar 

  • Cohen RM, Nordahl TE, Semple WE, Andreason P, Litman RE, Piekar D (1997) The brain metabolic patterns of clozapine- and fluphenazine-treated patients with schizophrenia duringa continuous performance task. Arch Gen Psychiatry 54:481–486

    Article  PubMed  CAS  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transientand sustained activity in a distributed neural system forhuman working memory. Nature 386: 608–611

    Article  PubMed  CAS  Google Scholar 

  • Curran SM, Murray CM, Van Beck M et al (1993) A singlephoton emission computerised tomography study of regionalbrain function in elderly patients with major depression and with Alzheimer-type dementia. Br J Psychiatry 163:155–165

    Article  PubMed  CAS  Google Scholar 

  • Curtis VA, Bullmore ET, Brammer MJ et al (1998) Attenuatedfrontal activation during a verbal fluency task in patients withschizophrenia. Am J Psychiatry 155: 1056–1063

    PubMed  CAS  Google Scholar 

  • Dao-Castellana MH, Paillere-Martinot ML, Hantraye P et al (1997) Presynaptic dopaminergic function in the striatum ofschizophrenic patients.Schizophr Res 23: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Zhou L, Schuff N, Weiner MW (1997) Protonmagnetic resonance spectroscopy of the anterior cingulateregion in schizophrenia. Schizophr Res 27: 65–71

    Article  PubMed  CAS  Google Scholar 

  • DeLisi LE, Sakuma M, Kushner M, Finer DL, Hoff AL, Crow TJ (1997a) Anomalous cerebral asymmetry and language processing in schizophrenia. Schizophr Bull 23: 255–271

    Article  PubMed  CAS  Google Scholar 

  • DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997b) Schizophrenia as a chronic active brain process: astudy of progressive brain structural change subsequent tothe onset of schizophrenia. Psychiatry Res 74: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Dewey SL, Smith GS, Logan J et al (1992) GABAergic inhibition of end ogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neurosci 12:3773–3780

    PubMed  CAS  Google Scholar 

  • Dewey SL, Smith GS, Logan J, Brodie JD (1993) Modulation of central cholinergic activity by GABA and serotonin: PET studies with HC-benztropine in primates. Neuropsychopharmacology 8: 371–376

    Article  PubMed  CAS  Google Scholar 

  • D’haenen H, Bossuyt A, Mertens J, Bossuyt-Piron C, Gijsemans M, Kaufman L (1992) SPECT imaging of serotonin2 receptorsin depression. Psychiatry Res 45: 227–237

    Article  PubMed  Google Scholar 

  • Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RS, Grasby PM (1995) Dopaminergic modulation of impairedcognitive activation in the anterior cingulate cortex inschizophrenia. Nature 378: 180–182

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolardepression. J Neurosci 12: 3628–3641

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Simpson JR Jr., Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827

    Article  PubMed  CAS  Google Scholar 

  • Dupont RM, Jernigan TL, Butters N, Delis D, Hesselink JR, Heindel W, Gillin JC (1990) Subcortical abnormalitiesdetectedinbipolaraffectivedisorderusingmagnetic resonance imaging. Clinical and neuropsychological significance. Arch Gen Psychiatry 47: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Erkinjuntti T (1987) Differential diagnosis between Alzheimer’sdisease and vascular dementia: evaluation of common clinicalmethods. Acta Neurol Scand 76: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Ehrin E, Eriksson L et al (1985) Substituted benzamidesas ligands for visualization of dopamine receptor binding inthe human brain by positron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel F, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 672

    Article  Google Scholar 

  • Farde L, Wiesel FA, Nordström AL, Sedvall G (1989) D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology(Berl) 99[Suppl]: 28–31

    Article  Google Scholar 

  • Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) PET analysis of central Dl and D2 dopamine receptoroccupancy in patients treated with typical neuroleptics andclozapine: relation to extra-pyramidal side effects. Arch Gen Psychiatry 49: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Halldin C, Muller L, Suhara T, Karlsson P, Hall H (1994) PET study of [11C]beta-CIT binding to monoaminetransporters in the monkey and human brain. Synapse 16:93–103

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Pauli S, Halldin C (1995) Variability in D2-dopamine receptor density and affinity: a PET study with[11C]raclopride in man. Synapse 20: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Faulstich ME (1991) Brain imaging in dementia of the Alzheimertype. Int J Neurosci 57: 39–49

    Article  PubMed  CAS  Google Scholar 

  • Fischman AJ, Bonab AA, Babich JW et al (1996) Positronemission tomographic analysis of central 5–hydroxytryptamine2 receptor occupancy in healthy volunteers treated withthe novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther 279: 939–947

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling ofcerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak RS (1989) PET: studies in dementia. Psychiatry Res 29: 353–355

    Article  PubMed  CAS  Google Scholar 

  • *Frackowiak RS, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Human brain function. Academic, San Diego

    Google Scholar 

  • Frey KA, Holthoff VA, Koeppe RA, Jewett DM, Kilbourn MR, KĂĽhl DE (1991) Parametric in vivo imaging of benzodiazepine receptor distribution in human brain. Ann Neurol 30:663–672

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (1992) The dorsolateral prefrontal cortex, schizophrenia and PET. J Neural Transm Suppl 37: 79–93

    PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparingfunctional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11: 690–699

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference andpower. Neuroimage 4: 223–235

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Friston KJ, Herold S et al (1995) Regional brainactivity in chronic schizophrenic patients during theperformance of a verbal fluency task. Br J Psychiatry 167:343–349

    Article  PubMed  CAS  Google Scholar 

  • Frost JA, Springer JA, Binder JR, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1997) Sex does not determine functionallateralization of semantic processing: evidence from fMRI. Neuroimage 5: S564

    Google Scholar 

  • Fujimoto T, Nakano T, Takano T, Takeuchi K, Yamada K, Fukuzako T, Akimoto H (1996) Proton magnetic resonancespectroscopy of basal ganglia in chronic schizophrenia. Biol Psychiatry 40: 14–18

    Article  PubMed  CAS  Google Scholar 

  • Furey ML, Pietrini P, Haxby JV et al (1997) Cholinergic stimulation alters performance and task-specific regional cerebralblood flow during working memory. Proc Natl Acad Sci USA 94: 6512–6516

    Article  PubMed  CAS  Google Scholar 

  • George MS, Ketter TA, Gill DS, Haxby JV, Ungerleider LG, Herscovitch P, Post RM (1993) Brain regions involved in recognizing facial emotion or identity: an oxygen-15 PET study. J Neuropsychiatry Clin Neurosci 5: 384–394

    PubMed  CAS  Google Scholar 

  • Gonzalez RG, Guimaraes AR, Moore GJ, Crawley A, Cupples LA, Growdon JH (1996) Quantitative in vivo 3IP magneticresonance spectroscopy of Alzheimer disease. Alzheimer Dis Assoc Disord 10: 46–52

    PubMed  CAS  Google Scholar 

  • Grasby PM, Frith CD, Paulesu E, Friston KJ, Frackowiak RS, Dolan RJ (1995) The effect of the muscarinic antagonist scopolamine on regional cerebral blood flow duringthe performance of a memory task. Exp Brain Res 104:337–348

    Article  PubMed  CAS  Google Scholar 

  • Gur RC, Gur RE (1995) Hypofrontality in schizophrenia: RIP. Lancet 345: 1383–1384

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Mozley PD, Shtasel DL et al (1994) Clinical subtypes ofschizophrenia: differences in brain and CSF volume. Am J Psychiatry 151: 343–350

    PubMed  CAS  Google Scholar 

  • Herholz K (1995) FDG PET and differential diagnosis ofdementia. Alzheimer Dis Assoc Disord 9: 6–16

    Article  PubMed  CAS  Google Scholar 

  • Heun R, Mazanek M, Atzor KR et al (1997a) Amygdala-hippocampal atrophy and memory performance in dementia ofAlzheimer type. Dement GeriatrCognDisord 8: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Heun R, Schlegel S, Graf-Morgenstern M, Tintera J, Gawehn J, Stoeter P (1997b) Proton magnetic resonance spectroscopyin dementia of Alzheimer type. Int J Geriatr Psychiatry 12:349–358

    Article  PubMed  CAS  Google Scholar 

  • Hietala J, Syvälahti E, Vuorio K et al (1995) Presynapticdopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 1130–1131

    Google Scholar 

  • Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, Ugurbil K (1993) Functional magnetic resonance imaging ofBroca’s area during internal speech. Neuroreport 4: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Hoehn-Saric R, Pearlson GD, Harris GJ, Machlin SR, Camargo EE (1991) Effects of fluoxetine on regional cerebral bloodflow in obsessive-compulsive patients. Am J Psychiatry 148:1243–1245

    PubMed  CAS  Google Scholar 

  • Hoffman WF, Ballard L, Turner EH, Casey DE (1991) Three-yearfollow-up of older schizophrenics: extrapyramidal syndromes, psychiatric symptoms, and ventricular brain ratio. Biol Psychiatry 30: 913–926

    Article  PubMed  CAS  Google Scholar 

  • Hokama H, Shenton ME, Nestor PG et al (1995) Caudate,putamen, and globuspallidus volume in schizophrenia: aquantitative MRI study. Psychiatry Res 61: 209–229

    Article  PubMed  CAS  Google Scholar 

  • Holcomb HH, Cascella NG, Thaker GK, Medoff DR, Dannals RF, Tamminga CA (1996) Functional sites of neuroleptic drugaction in the human brain: PET/FDG studies with and withouthaloperidol. Am J Psychiatry 153: 41–49

    PubMed  CAS  Google Scholar 

  • Howard RJ, Ellis C, Bullmore ET et al (1996) Functionalechoplanar brain imaging correlates of amphetamine administration to normal subjects and subjects with the narcolepticsyndrome. MagnReson Imaging 14: 1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Huang S-C, Phelps ME, Hoffman EJ, Sideria K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolicrate of glucose in man. Am J Physiol 238: E69–E82

    PubMed  CAS  Google Scholar 

  • Hurwitz TA, Clark C, Murphy E, Klonoff H, Martin WR, Pate BD (1990) Regional cerebral glucose metabolism in majordepressive disorder. Can J Psychiatry 35: 684–688

    PubMed  CAS  Google Scholar 

  • Imperato A, Dazzi L, Serra M, Gessa GL, Biggio G (1994) Differential effects of abecarnil on basal release of acetylcholine and dopamine in the rat brain. Eur J Pharmacol 261:205–208

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral bloodflow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Meguro K, Fujiwara T et al (1994) Assessment ofdopamine metabolism in brain of patients with dementia bymeans of 18F-fluorodopa and PET. Ann Nucl Med 8: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Jones PB, Harvey I, Lewis SW, Toone BK, Van-Os J, Williams M, Murray RM (1994) Cerebral ventricle dimensions as riskfactors for schizophrenia and affective psychosis: an epidemiological approach to analysis. Psychol Med 24: 995–1011

    Article  PubMed  CAS  Google Scholar 

  • Kaschka W, Feistel H, Ebert D (1995) Reduced benzodiazepinereceptor binding in panic disorders measured by iomazenilSPECT. J Psychiatr Res 29: 427–434

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Shioiri T, Inubushi T, Takahashi S (1993a) Brain lithiumconcentrations measured with lithium-7 magnetic resonancespectroscopy in patients with affective disorders: relationshipto erythrocyte and serum concentrations. Biol Psychiatry 33:147–152

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1993b) Alterations inbrain phosphorous metabolism in bipolar disorder detectedby in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Inubushi T, Takahashi S (1994a) Relationship of lithiumconcentrations in the brain measured by lithium-7 magneticresonance spectroscopy to treatment response in mania. J Clin Psychopharmacol 14: 330–335

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1994b) Phosphorus-31 magnetic resonancespectroscopy and ventricular enlargement in bipolar disorder. Psychiatry Res 55: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Fujii K, Shioiri T, Inubushi T, Takahashi S (1996a) Lithium side effects in relation to brain lithium concentrationmeasured by lithium-7 magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 20: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, Inubushi T (1996b) Choline-containing compounds detected by proton magnetic resonance spectroscopyin the basal ganglia in bipolar disorder. J Psychiatry Neurosci 21: 248–254

    PubMed  CAS  Google Scholar 

  • Kellner CH, Jolley RR, Holgate RC, Austin L, Lydiard RB, Laraia M, Ballenger JC (1991) Brain MRI in obsessive-compulsivedisorder. Psychiatry Res 36: 45–49

    Article  PubMed  CAS  Google Scholar 

  • Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification ofmagnetic resonance scans for hippocampal and parahippo-campal atrophy in Alzheimer’s disease. Neurology 41: 51–54

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, BrĂĽcke T, Angelberger P, Asenbaum S, Podreka I (1995) SPECT imaging of dopamine receptors with[123I]epidepride: characterization of uptake in the humanbrain. J Neural Transm 101: 95–103

    Article  CAS  Google Scholar 

  • Krishnan KR, McDonald WM, Escalona PR et al (1992) Magneticresonance imaging of the caudate nuclei in depression.Preliminary observations. Arch Gen Psychiatry 49: 553–557

    Article  PubMed  CAS  Google Scholar 

  • Kuikka JT, Pitkänen A, Lepola U et al (1995) Abnormalregional benzodiazepine receptor uptake in the prefrontalcortex in patients with panic disorder. Nucl Med Commun 16:273–280

    Article  PubMed  CAS  Google Scholar 

  • Kuikka JT, Akerman KK, Hiltunen J et al (1997) Striatal andextrastriatal imaging of dopamine D2 receptors in the livinghuman brain with [123I]epidepride single-photon emissiontomography. Eur J Nucl Med 24: 483–487

    PubMed  CAS  Google Scholar 

  • Kuwabara H, Cumming P, Reith J, Leger G, Diksic M, Evans AC, Gjedde A (1993) Human striatal L-dopa decarboxylaseactivity estimated in vivo using 6–[18F]fluoro-dopa andpositron emission tomography: error analysis and applicationto normal subjects. J Cereb Blood Flow Metab 13: 43–56

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow inschizophrenia. Neuroreport 6: 869–872

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Herholz K, Huk W, Feistel H (1990) Diagnosticdifferentiation of dementia diseases by modern imagingprocedures. Fortschr Neurol Psychiatr 58: 380–398

    Article  PubMed  CAS  Google Scholar 

  • Lamelle M, Abi-Dargham A, Al-Tikriti MS et al (1994) SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. II. Equilibriumanalysis of constant infusion experiments and correlation within vitro parameters. J Cereb Blood Flow Metab 14:453–465

    Article  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH et al (1996) Singlephoton emission computerized tomography imaging ofamphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93: 9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Lawrie SM, Abukmeil SS, Chiswick A, Egan V, Santosh CG, Best JJ (1997) Qualitative cerebral morphology in schizophrenia: amagnetic resonance imaging study and systematic literaturereview. Schizophr Res 25: 155–166

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Palmer AJ, Quinn N et al (1986) Brain dopaminemetabolism in patients with Parkinson’s disease measuredwith positron emission tomography. J Neurol Neurosurg Psychiatry 49: 853–860

    Article  PubMed  CAS  Google Scholar 

  • Liddle PF, Friston KJ, Frith CD, Frackowiak RS (1992) Cerebralblood flow and mental processes in schizophrenia. J R Soc Med 85: 224–227

    PubMed  CAS  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N et al (1996) [11C]MDL100907, a radioligand for selective imaging of 5–HT(2A)receptors with positron emission tomography. Life Sci 58:187–192

    Article  Google Scholar 

  • Mann JJ, Malone KM, Diehl DJ, Perel J, Cooper TB, Mintun MA (1996) Demonstration in vivo of reduced serotonin responsivity in the brain of untreated depressed patients. Am J Psychiatry 153: 174–182

    PubMed  CAS  Google Scholar 

  • Marshall I, Wardlaw J, Cannon J, Slattery J, Sellar RJ (1996) Reproducibility of metabolite peak areas in 1H MRS of brain. MagnReson Imaging 14: 281–292

    Article  PubMed  CAS  Google Scholar 

  • Martinot JL, Hardy P, Feline A et al (1990) Left prefrontal glucosehypometabolism in the depressed state: a confirmation. Am J Psychiatry 147: 1313–1317

    PubMed  CAS  Google Scholar 

  • Martinot JL, Paillere-Martinot ML, Loc’h C et al (1991) Theestimated density of D2 striatal receptors in schizophrenia.A study with positron emission tomography and 76Br-bromolisuride. Am J Psychiatry 158: 346–350

    Article  CAS  Google Scholar 

  • Masterman DL, MĂ©ndez MF, Fairbanks LA, Cummings JL (1997) Sensitivity, specificity, and positive predictive value oftechnetium 99-HMPAO SPECT in discriminating Alzheimer’sdisease from other dementias. J Geriatr Psychiatry Neurol 10:15–21

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Brannan SK, Mahurin RK et al (1997) Cingulatefunction in depression: a potential predictor of treatmentresponse. Neuroreport 8: 1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Maziere B, Loc’h C, Baron JC, Sgouropoulos P, Duquesnoy N, D’Antona R, Cambon H (1985) In vivo quantitative imagingof dopamine receptors in human brain using positronemission tomography and [76Br]bromospiperone. Eur J Pharmacol 114: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD (1996) Vascular dementia: perfusional and metabolic disturbances and effects of therapy. J Neural Transm Suppl 47:183–191

    Article  PubMed  CAS  Google Scholar 

  • Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD (1993) Alzheimer disease: depiction of increased cerebralmyo-inositol with proton MR spectroscopy. Radiology 187:433–437

    PubMed  CAS  Google Scholar 

  • Mountz JM, Modell JG, Wilson MW, Curtis GC, Lee MA, Schmaltz S, KĂĽhl DE (1989) Positron emission tomographicevaluation of cerebral blood flow during state anxiety insimple phobia. Arch Gen Psychiatry 46: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Murphy DG, DeCarli CD, Daly E et al (1993) Volumetric magnetic resonance imaging in men with dementia of the Alzheimer type: correlations with disease severity. Biol Psychiatry 34: 612–621

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Hartvig P, Lilja A et al (1990) Decreased uptake and binding of HC-nicotine in brain of Alzheimer patients asvisualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2: 215–224

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H et al (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13: 747–758

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahi E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease:effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84

    Article  PubMed  CAS  Google Scholar 

  • Nordström AL, Farde L, Halldin C (1993) High 5–HT2 receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology 110: 365–367

    Article  PubMed  Google Scholar 

  • Nordstrom AL, Farde L, Eriksson L, Halldin C (1995) No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and[HC]N-methylspiperone. Psychiatry Res 61: 67–83

    Article  PubMed  CAS  Google Scholar 

  • Nyberg S, Farde L, Halldin C (1997) A PET study of 5–HT2 and D2 dopamine receptor occupancy induced by olanzapine in healthy subjects. Neuropsychopharmacology 16: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K et al (1997) Decreased prefrontal dopamine Dl receptors in schizophrenia revealed by PET. Nature 385: 634–636

    Article  PubMed  CAS  Google Scholar 

  • Page MP, Howard RJ, O’Brien JT, Buxton-Thomas MS, Pickering AD (1996) Use of neural networks in brain SPECT to diagnose Alzheimer’s disease. J Nucl Med 37: 195–200

    PubMed  CAS  Google Scholar 

  • Pardo JV, Pardo PJ, Raichle ME (1993) Neural correlates of self-induced dysphoria. Am J Psychiatry 150: 713–719

    PubMed  CAS  Google Scholar 

  • Pearlson GD, Kim WS, Kubos KL et al (1989) Ventricle-brain ratio, computed tomographic density, and brain area in 50schizophrenics. Arch Gen Psychiatry 46: 690–697

    Article  PubMed  CAS  Google Scholar 

  • Pearlson GD, Harris GJ, Powers RE et al (1992) Quantitativechanges in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 49: 402–408

    Article  PubMed  CAS  Google Scholar 

  • Parnetti L, Tarducci R, Presciutti O et al (1997) Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev 97: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Perani D, Colombo C, Bressi S et al (1995) [18F]FDG PET studyin obsessive-compulsive disorder. A clinical/metabolic correlation study after treatment. Br J Psychiatry 166: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Moossy J, Withers G, McKeag D, Panchalingam K (1988) 31P nuclear magnetic resonance study of the brainin Alzheimer’s disease. J Neuropathol Exp Neurol 47:235–248

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, Allen M (1991) Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132

    Article  PubMed  CAS  Google Scholar 

  • Petty RG, Barta PE, Pearlson GD et al (1995) Reversal of asymmetry of the planum temporale in schizophrenia. Am J Psychiatry 152: 715–721

    PubMed  CAS  Google Scholar 

  • Pike VW, McCarron JA, Lammertsma AA et al (1996) Exquisite delineation of 5–HT1A receptors in human brain withPET and [carbonyl-HC]WAY-100635. Eur J Pharmacol 301:R5–R7

    Article  PubMed  CAS  Google Scholar 

  • Rauch SL, Savage CR, Alpert NM et al (1995) A positron emission tomographic study of simple phobic symptom provocation. Arch Gen Psychiatry 52: 20–28

    Article  PubMed  CAS  Google Scholar 

  • Rauch SL, van der Kolk BA, Fisler RE et al (1996) A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry 53: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Yurgelun-Todd DA, Cohen BM (1994) Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. Am J Psychiatry 151:1493–1495

    PubMed  CAS  Google Scholar 

  • Robertson JS, Marr RB, Rosenblum M et al (1973) 32-Crystal positron transverse section detector. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roland PE (1993) Brain activation. Wiley and Liss, New York

    Google Scholar 

  • Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA 95:773–780

    Article  PubMed  CAS  Google Scholar 

  • Sabri O, Erkwoh R, Schreckenberger M et al (1997) Regional cerebral blood flow and negative/positive symptoms in 24drug-naive schizophrenics. J Nucl Med 38: 181–188

    PubMed  CAS  Google Scholar 

  • Sadzot B, Lemaire C, Maquet P et al (1995) Serotonin 5HT2receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanser in: resultsin young normal controls. J Cereb Blood Flow Metab 15:787–797

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY et al (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848

    PubMed  CAS  Google Scholar 

  • Schlegel S, Aldenhoff JB, Eissner D, Lindner P, Nickel O (1989a) Regional cerebral blood flow in depression: associations with psychopathology. J Affect Disord 17: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Schlegel S, Maier W, Philipp M, Aldenhoff JB, Heuser I, Kretzschmar K, Benkert O (1989b) Computed tomography in depression: association between ventricular size and psychopathology. Psychiatry Res 29: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Schlegel S, Steinert H, Bockisch A, Hahn K, Schloesser R, Benkert O (1994) Decreased benzodiazepine receptor binding in panic disorder measured by IOMAZENIL-SPECT. A preliminary report. Eur Arch Psychiatry Clin Neurosci 244: 49–51

    Article  PubMed  CAS  Google Scholar 

  • Schlösser R, Schlegel S (1995) D2-receptor imaging with[123I]IBZM and single photon emission tomography in psychiatry: a survey of current status. J Neural Transm 99:173–185

    Article  Google Scholar 

  • Schlösser R, Simkowitz P, Bartlett EJ, Wolkin A, Smith GS, Dewey SL, Brodie JD (1996) The study of neurotransmitter interactions using positron emission tomography and functional coupling. Clin Neuropharmacol 19: 371–389

    Article  Google Scholar 

  • Schlösser R, Schlegel S, Hiemke C, Nickel O, Bockisch A, Rao ML, Hahn K (1997) [123I]IBZM SPECT in patients treated with typical and atypical neuroleptics: relationship to drug plasma levels and extra pyramidal side effects. Psychiatry Res 75: 103–114

    Article  PubMed  Google Scholar 

  • Schlösser R, Brodie JD, Dewey SL et al (1998a) Long-term stability of neurotransmitter activity investigated with 11C-raclopride PET. Synapse 28: 66–70

    Article  PubMed  Google Scholar 

  • Schlösser R, Hutchinson M, Joseffer S et al (1998b) Functional magnetic resonance imaging of human brain activityin a verbal fluency task. J Neurol Neurosurg Psychiatry 64:492–498

    Article  PubMed  Google Scholar 

  • Schneider F, Grodd W, Weiss U, Klose U, Mayer KR, Nagele T, Gur RC (1997) Functional MRI reveals left amygdala activation during emotion. Psychiatry Res 76: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Schröder J, Wenz F, Schad LR, Baudenstiel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia: a study with functional magnetic resonance imaging. Br J Psychiatry 167: 197–201

    Article  PubMed  Google Scholar 

  • Seeman P, Guan HC, NiĹĽnik HB (1989) Endogenous dopamine lowers the dopamine D2 receptor density as measured by[3H]raclopride: implications for positron emission tomography of the human brain. Synapse 3: 96–97

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC, Van Toi HH (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Segebarth C, Belle V, Delon C et al (1994) Functional MRI of the human brain: predominance of signals from extracerebralveins. Neuroreport 5: 813–816

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Shaywitz SE, Pugh KR et al (1995) Sex differences in the functional organization of the brain for language. Nature 373: 607–609

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Yurgelun Todd D, Kremen WS, Woods BT, Goldstein JM, Faraone SV, Tsuang MT (1994) Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biol Psychiatry 35:235–246

    Article  PubMed  CAS  Google Scholar 

  • Shioiri T, Kato T, Inubushi T, Murashita J, Takahashi S (1994) Correlations of phosphomonoesters measured by phosphorus-31 magnetic resonance spectroscopy in the frontal lobesand negative symptoms in schizophrenia. Psychiatry Res 55:223–235

    Article  PubMed  CAS  Google Scholar 

  • Shioiri T, Hamakawa H, Kato T, Murashita J, Fujii K, Inubushi T, Takahashi S (1996a) Proton magnetic resonance spectroscopy of the basal ganglia in patients with schizophrenia: a preliminary report. Schizophr Res 22: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Shioiri T, Kato T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1996b) High-energy phosphate metabolism in the frontal lobes of patients with panic disorderdetected by phase-encoded 3IP-MRS. Biol Psychiatry 40:785–793

    Article  PubMed  CAS  Google Scholar 

  • Silbersweig DA, Stern E, Frith C et al (1995) A functionalneuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, de Leon MJ, George AE et al (1992) Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 49: 1142–1150

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, Dewey SL, Brodie JD et al (1997) Serotonergicmodulation of dopamine measured with [11C]raclopride and PET in normal human subjects. Am J Psychiatry 154:490–496

    PubMed  CAS  Google Scholar 

  • Smith GS, Schlösser R, Brodie JD et al (1998) Glutamate modulation of dopamine measured in vivo with positronemission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacology 18: 18–25

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxy-glucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Stern CE, Corkin S, Gonzalez RG et al (1996) The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 93: 8660–8665

    Article  PubMed  CAS  Google Scholar 

  • Stewart RS, Devous MD Jr., Rush AJ, Lane L, Bonte FJ (1988) Cerebral blood flow changes during sodium-lactate-induced panic attacks. Am J Psychiatry 145: 442–449

    PubMed  CAS  Google Scholar 

  • Strauss WL, Layton ME, Hayes CE, Dager SR (1997) 19F magnetic resonance spectroscopy investigation in vivo of acute and steady-state brain fluvoxamine levels in obsessive-compulsive disorder. Am J Psychiatry 154: 516–522

    PubMed  CAS  Google Scholar 

  • Sunderland T, Esposito G, Molchan SE et al (1995) Differential cholinergic regulation in Alzheimer’s patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology (Berl) 121: 231–241

    Article  CAS  Google Scholar 

  • Tedeschi E, Hasselbalch SG, Waldemar G et al (1995) Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 59: 608–615

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46: 531–540

    Article  PubMed  CAS  Google Scholar 

  • Tune LE, Wong DF, Pearlson G et al (1993) Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatry Res 49: 219–237

    Article  PubMed  CAS  Google Scholar 

  • Van Horn JD, McManus IC (1992) Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio (VBR). Br J Psychiatry 160: 687–697

    Article  PubMed  Google Scholar 

  • Videbech P (1997) MRI findings in patients with affective disorder: a meta analysis. Acta Psychiatr Scand 96: 157–168

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Brodie JD, Wolf AP, Angrist B, Russell J, Cancro R (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. J Neurol Neurosurg Psychiatry 49: 1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wolf AP, Van Gelder P, Brodie JD, Overall JE, Cancro R, Gomez-Mont F (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144: 151–158

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wolf AP et al (1992) Distribution and kinetics of carbon-11–cocaine in the human body measured with PET. J Nucl Med 33: 521–525

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ et al (1993) Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain. J Nucl Med 34: 609–613

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS et al (1994) Imaging endogenous dopamine competition with [11C]raclopride in the humanbrain. Synapse 16: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Ding YS, Fowler JS et al (1995) A new PET lig and forthe dopamine transporter: studies in the human brain. J Nucl Med 36: 2162–2168

    PubMed  CAS  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16: 357–372

    Article  PubMed  CAS  Google Scholar 

  • Volz HP, Gaser C, Hager F et al (1997a) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test -a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Volz HP, Rzanny R, May S et al (1997b) 31P magnetic resonance spectroscopy in the dorsolateral prefrontal cortex of schizophrenics with a volume selective technique – preliminary findings. Biol Psychiatry 41: 644–648

    Article  PubMed  CAS  Google Scholar 

  • Wagner HN Jr, Burns HD, Dannais RF et al (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS et al (1996) Age associated decrements in dopamine D2 receptors in thalamus and in temporal in sula of human subjects. Life Sci 59: PL31–PL35

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF, Zee RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I.Regional cerebral blood flow evidence. Arch Gen Psychiatry 43: 114–124

    Article  PubMed  CAS  Google Scholar 

  • Williamson P (1987) Hypofrontality in schizophrenia: a review of the evidence. Can J Psychiatry 32: 399–404

    PubMed  CAS  Google Scholar 

  • Wong DF, Gjedde A, Wagner HN Jr (1986a) Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Gjedde A, Wagner HN Jr, Dannals RF, Douglass KH, Links JM, Kuhar MJ (1986b) Quantification of neuroreceptors in the living human brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 6: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE et al (1986c) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Woodruff PW, Pearlson GD, Geer MJ, Barta PE, Chilcoat HD (1993) A computerized magnetic resonance imaging study of corpus callosum morphology in schizophrenia. Psychol Med 23: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Woods R, Mazziotta J, Cherry S (1992) Automated algorithm foraligning tomographic images. II. Crossmodality MRI-PE Timages. J Comput Assist Tomogr 16: 620–633

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Buchsbaum MS, Hershey TG, Hazlett E, Sicotte N,Johnson JC (1991) PET in generalized anxiety disorder. Biol Psychiatry 29: 1181–1199

    Article  PubMed  CAS  Google Scholar 

  • Young AH, Blackwood DH, Roxborough H, McQueen JK, Martin MJ, Kean D (1991) A magnetic resonance imaging study of schizophrenia: brain structure and clinical symptoms. Br J Psychiatry 158: 158–164

    Article  PubMed  CAS  Google Scholar 

  • Young LT, Wong DF, Goldman S et al (1991) Effects of endogenous dopamine on kinetics of [3H]N-methylspiperone and [3H]raclopride binding in the rat brain. Synapse 9:188–194

    Article  PubMed  CAS  Google Scholar 

  • Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF (1996) Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 153:200–205

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlösser, R., Brodie, J.D. (2001). Brain Imaging in Psychiatry. In: Henn, F., Sartorius, N., Helmchen, H., Lauter, H. (eds) Contemporary Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59519-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59519-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64007-0

  • Online ISBN: 978-3-642-59519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics