Skip to main content

Contributions to Toxicity Testing and Toxin Analysis

  • Chapter
Cyanotoxins
  • 291 Accesses

Abstract

Toxicity testing is of key importance both for cyanotoxin research as well as for monitoring and can only partially be replaced by chemical analysis of cyanotoxins. Analytical methods were developed to detect selected known substances, whereas toxicological assays aim at determining the effects of all substances, known or unknown, in a sample. Extracts of cyanobacteria may contain a variety of chemical substances, numerous of which may be unknown, and their potential effect can only be detected by toxicological testing complementary to chemical toxin analysis. The mouse bioassay has been the most widely used toxicity test in cyanotoxin research and in the screening programmes published from several countries in the 1980s and early 1990s (Sivonen and Jones 1999). It involves intraperitoneal injection of cyanobacterial material or extracts into mice and determination of the dose that kills 50% of the mice, the classical LD50 (Berg and Soli 1985; Falconer 1993). Skulberg et al. (1994) classified cyanobacterial toxins (cyanotoxins) by the response to them as observed in the mouse bioassay as hepatotoxins, neurotoxins and toxins with protracted effects. The time of survival and pathologically observable damage to organs were used as parameters for this classification. For ethical reasons (especially pertaining to LD50 tests), because of stringent animal wefare regulations in many countries, and because of time and costs involved, mouse test are unsuitable for large-scale testing of field samples, and the need to replace the mouse bioassay with alternative methods at the suborganismic level is urgent (another reason being a lack of adequeate diagnostic/mechanistic end points). Chapter 8.1 shows that cellular assays are a promising tool for monitoring cyanobacterial toxicity, and Chapter 8.2 provides verification for a cellular microcystin aasay comparing the results to those of the mouse bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An JS, Carmichael WW (1994) Use of a colorimetric protein phosphatase inhibition assay linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 32: 1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Aune T, Berg K (1986) Use of freshly prepared rat hepatocytes to study toxicity of blooms of the blue-green algae Microcystis aeruginosaand Oscillatoria agardhii. J Toxicol Environ Health 19: 325–336

    Article  PubMed  CAS  Google Scholar 

  • Aune T, Yasumoto T, Engeland E (1991) Light and scanning electron microscopic studies on effects of marine algal toxins toward freshly prepared hepatocytes. J Toxicol Environ Health 34: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Balon EK (1975) Terminology of intervals in fish development. J Fish Res Board Can 32: 1663–1670

    Article  Google Scholar 

  • Benndorf J, Henning M (1989) Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen reservoir (GDR) Int Revue ges Hydrobiol 74:233–248

    Google Scholar 

  • Berg K, Aune T (1987) Freshly prepared rat hepatocytes used in screening the toxicity of blue-green algal blooms. J Toxicol Environment Health 20: 187–197

    Article  CAS  Google Scholar 

  • Birge WJ, Black JA, Westerman AG (1985) Short-term fish and amphibian embryo-larval tests for determining the effects of toxicant stress on early life stages and estimating chronic values for single compounds and complex effluents. Environ Toxicol Chem 4: 807–822

    CAS  Google Scholar 

  • Campbell DL, Lawton LA, Beattie KA, Codd GA (1994) Comparative assessment of the specificity of the brine shrimp and Microtox assays to hepatotoxic (microcystin-LR-containing) cyanobacteria. Environ Toxicol Water Qual 9: 71–77

    Article  CAS  Google Scholar 

  • Carbis CR, Waldron DL, Mitchell GF, Anderson JW, McCauley I (1995) Recovery of hepatic function and latent mortalities in sheep exposed to the blue-green alga Microcystis aeruginosa. VetRec 1: 12–15

    Google Scholar 

  • Carmichael WW, Falconer IR (1993) Diseases related to freshwater blue-green algal toxins, and control measures. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press London, pp. 186–209

    Google Scholar 

  • Creaser CW (1934) The technic of handling the zebrafish (Brachydanio rerio)for the production of eggs which are favorable for embryological research and are availabe at any specified time throughout the year. Copeia 1934: 159–161

    Article  Google Scholar 

  • Detrich W, Zon, LI, Westerfield M (1998) The zebrafish: Biology. Methods in Cell Biology Series Vol. 59, Academic Press Erhard M, von Dohren H, Jungblut P (1999) Rapid Identification of the new Anabaenopeptin G from Planktothrix agardhiiHUB 011 using Matrix-assisted Laser Desorption/ionization Time- of-flight Mass Spectrometry. Rapid Commun Mass Spec 13: 337–343

    Google Scholar 

  • Erhard M, von Dohren H., Jungblut P (1997) Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nature Biotech 15: 906–909

    Article  CAS  Google Scholar 

  • Eriksson JE, Gronberg L, Nygard S, Slotte JP, Meriluoto JAO (1990) Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim Biophys Acta 1025: 60–66

    Article  PubMed  CAS  Google Scholar 

  • Falconer IR (1993) Mechanism of toxicity of cyclic peptide toxins from blue-green algae. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press, London, pp. 177–186

    Google Scholar 

  • Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press, London, 224 pp

    Google Scholar 

  • Falconer IR (1993) Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water In: Codd GA, JefFeries TM, Keevil CW, Potter E (eds). Proceeding of the first international symposium on detection methods for cyanobacterial (blue- green algal) toxins, 27-29 September, University of Bath, UK: Detection Methods for Cyanobacterial Toxins. Special Publication No. 149, The Royal Society of Chemistry, Cambridge (U.K.), pp. 3–10

    Google Scholar 

  • Falconer IR, Yeung SK (1992) Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem Biol Interact 81: 181–196

    Article  PubMed  CAS  Google Scholar 

  • Fastner J, Flieger I, Neumann U (1998) Optimised extraction of microcystins from field samples — a comparison of different solvents and procedures. Wat Res 32: 3177–3181

    Article  CAS  Google Scholar 

  • Feuillade M, Jann-Para G, Feuillade J (1996) Toxic compounds to Artemiafrom and isolates of the cyanobacterium Planktothrix rubescens. Arch Hydrobiol 138: 175–186

    Google Scholar 

  • Fitzgeorge R, Clark S, Keevil C (1994) Routes of intoxication. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. The Royal Society of Chemistry. ISBN 0-85186-961-0, pp. 69–74

    Chapter  Google Scholar 

  • Fujii K, Sivonen K, Adachi K, Noguchi K, Shimizu Y, Sano H, Hirayama K, Suzuki M, Harada K (1997) Comparative study of toxic and non-toxic cyanobacterial products: novel peptides from toxic Nodularia spumigenaAV 1. Tetrahedron Lett 38: 5525–5532

    Article  CAS  Google Scholar 

  • Grabow WOK, Durandt WC, Prozesky OW, Scott WE (1982) Microcystis aeruginosa toxin: cell culture toxicity, hemolysis, and mutagenicity assays. Appl Environ Microbiol 43:1425–1433

    Google Scholar 

  • Harada KI (1996) Chemistry and detection of microcystins. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. CRC Press, pp. 103–148

    Google Scholar 

  • Harada KI (1996) Chemistry and detection of microcystins. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, Boca Raton, pp 103–148

    Google Scholar 

  • Heinze R (1996) A biotest for hepatotoxins using primary rat hepatocytes. Phycologia 35 Suppl.: 89–93

    Google Scholar 

  • Henning K, Kremer J, Meyer H (1992) Cytotoxicity of cyanobacterium Microcystis aeruginosa. J Vet Med B 39: 307–310

    Article  CAS  Google Scholar 

  • Henning M, Kohl JG (1981) Toxic blue-green algae water blooms found in some lakes in the German Democratic Republic. Int Revue ges Hydrobiol 66: 553–561

    Article  Google Scholar 

  • Hermansky SJ, Stohs SJ, Eldeen ZM, Roche VF (1991) Evaluation of potential chemoprotectants against microcystin-LR hepatotoxicity in mice. J Appl Toxicol 11: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem 265: 19401–19404

    PubMed  CAS  Google Scholar 

  • Honkanen RE, Codispoti BA, Tse K, Boynton AL (1994) Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon 32: 339–350

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Microginins 299-A nad -B leucine aminopeptidase inhibitors from the cyanobacterium Microcystis aeruginosaNIES 299. Tetrahedron 53: 10281–10288

    Article  CAS  Google Scholar 

  • Jungmann D. (1992) Toxic compounds isolated from MicrocystisPCC7806 that are more active against Daphniathan two microcystins. Limnol Oceanogr 37: 1777–1783

    Article  CAS  Google Scholar 

  • Karas M, Hillenkamp F. (1988) Anal Chem 60: 2299–2305

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Ghosh S, Wickstrom M, Miller LA, Hess R, Haschek WM, Beasley VR (1995) Comparative Pathology of microcystin-LR in cultured hepatocytes, fibroblasts, and renal epithelial cells. Natural Toxins 3: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TS (1995) Stages of embryonic development of the zebrafish. Dev.Dyn. 203:253–3lO

    Google Scholar 

  • Kiviranta J, Abdel Hameed A, Sivonen K, Niemelae SI, Carlberg G (1994) Toxicity of the blue-green alga Oscillatoria agardhiito the mosquito Aedes aegyptiand the shrimp Artemia salina. World J Microbiol Biotechnol 10: 517–520

    Article  CAS  Google Scholar 

  • Koehn E, Longley RE, Reed JK (1992) Microcolis A and B, new immunosuppressive peptides from the blue green alga Lyngbya majuscula. J Nat Prod 55: 613–619

    Article  PubMed  CAS  Google Scholar 

  • Lambert TW, Boland MP, Holmes CFB, Hrudey SE (1994) Quantitation of the microcystin hepatotoxins in water at environmentally relevant concentrations with the protein phosphatase bioassay. Environ Sci Technol 28: 735–755

    Article  Google Scholar 

  • Lawton LA, Edwards C, Codd GA (1994) Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119: 1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh C, Mackintosh RW (1994) The inhibition of protein phosphatases by toxins: implications for health and extremely sensitive and rapid bioassay for toxin detection In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds). Detection methods for cyanobacterial toxins. Special Publication No. 149, The Royal Society of Chemistry, Cambridge (U.K.), pp 90–99

    Google Scholar 

  • Nagata S, Tsutsumi T, Ueno Y, Watanabe MF (1997) Enzyme immunoassay for direct determination of microcystins in environmental water. J AOAC Internat 80: 408–417

    CAS  Google Scholar 

  • MacKintosh C, Coggins J, Cohen (1991) PP Plant protein phosphatases. Biochem J 273: 733–738

    CAS  Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371: 236–240

    Article  PubMed  CAS  Google Scholar 

  • Matsushima R, Yoshizawa S, Watanabe MF, Harada KI, Furusawa M, Carmichael WW, Fujiki H (1990) In vitro and in vivo effects of protein phosphatase inhibitors, microcystins and nodularin, on mouse skin and fibroblasts. Biochem Biophys Res Commun 171: 867–874

    Article  PubMed  CAS  Google Scholar 

  • McKim JM (1977) Evaluation of tests with early life stages of fish for predicting long-term toxicity. J Fish Res Board Can 34: 1148–1154

    Article  CAS  Google Scholar 

  • Miura GA, Robinson NA, Lawrence WB, Pace JG (1991) Hepatotoxicity of microcystin-LR in fed and fasted rats. Toxicon 29: 337–346

    Article  PubMed  CAS  Google Scholar 

  • Moolan RW, Rae B, Verbeek A (1996) Some comments on the determination of microcystin toxins in waters by igh-Performance Liquid Chromatography. Analyst 121: 233–238

    Article  Google Scholar 

  • Mosman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63

    Article  Google Scholar 

  • Murakami M, Sun Q, Ishida K, Matsuda H, Okino T, Yamaguchi K (1997) Microviridin G and H, two new elastase inhibiting peptides from cyanobacterium Nostoc minutum. Phytochemistry 45: 1197–1202

    Article  CAS  Google Scholar 

  • Oberemm A, Fastner J, Steinberg CEW (1997) Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio). Wat Res 31: 2918–2921

    Article  CAS  Google Scholar 

  • Oberemm A, Becker J, Codd G, Steinberg C (1999) Effects of cyanobacterial toxins and aqueouscrude extracts on the development offish and amphibians. Environ Toxicol 14: 77–88

    Article  CAS  Google Scholar 

  • Papendorf O, Konig GM, Wright AD, Chorus I, Oberemm A Mueggelone (1998) a novel fish embryo-larval development inhibitor from the fresh water cyanobacterium Aphanizomenon flos- aquae J Nat Prod 60:1298–1300

    Google Scholar 

  • Reinikainen M, Kiviranta J, Ulvi V, Niku Paavola ML (1995) Acute toxic effects of a novel cyanobacterial toxin on the crustaceans Artemia salinaand Daphnia pulex. Arch Hydrobiol 133: 61–69

    CAS  Google Scholar 

  • Rhinehart KL, Namikoshi M, Choi W (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6: 156–176

    Google Scholar 

  • Runnegar MTC, Falconer IR, Silver J (1981) Deformation of isolated rat hepatocytes by a peptide hepatotoxin from the blue-green alga Microcystis aeruginosa. Naunyn-Schmiedeberg’s Arch Pharmacol 317: 268–272

    Article  CAS  Google Scholar 

  • Runnegar MTC, Gerdes RG, Falconer IR (1991) The uptake of the cyano-bacterial hepatotoxin microcystin by isolated rat hepatocytes. Toxicon 29: 43–51

    Article  PubMed  CAS  Google Scholar 

  • Sahin A, Tencalla FG, Dietrich DR, Mez K, Naegeli H (1995) Enzymatic analysis of liver samples from rainbow trout for diagnosis of blue-green algae induced toxicosis. Am Vet Res 56: 1110–1115

    CAS  Google Scholar 

  • Sim ATR, Mudge LM (1993) Protein phosphatase activity in cyanobacteria: consequences for microcystin toxicity analysis. Toxicon 31: 1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L, Luukkainen R, Rhinehart KL (1992) Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol 58: 2495–2500

    PubMed  CAS  Google Scholar 

  • Sivonen K, Jones (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Published on the behalf of WHO by E & FN Spon, London, pp. 41–111

    Google Scholar 

  • Takai A, Mieskes G (1991) Inhibitory effects of okadaic acid on the p-nitrophenyl phosphatase activity of protein phosphatases. Biochem J 275: 233–239

    PubMed  CAS  Google Scholar 

  • Toivola DM, Eriksson JE, Brautigan, DL (1994) Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Lett 344: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Von Westernhagen H (1988) Sublethal effects of pollutants on fish eggs and larvae. In: Hoar WS, Randall DJ (eds) Fish Physiology. Vol. XI: The Physiology of Developing Fish. Part A: Eggs and Larvae, edited by.Academic Press.San Diego, p. 253–346

    Google Scholar 

  • Ward CJ, Beattie KA, Lee EYC, Codd GA (1997) Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high- performance liquid chromatographic analysis for microcystins. FEMS Microbiol Lett 153: 465–473

    Article  PubMed  CAS  Google Scholar 

  • Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) (1996) Toxic Microcystis, CRC Press, Boca Raton New York, 262 pp

    Google Scholar 

  • Weckesser J, Martin C, Jakobi C (1996) Cyanopeptolins, Depsipeptides from cyanobacteria. System Appl Microbiol 19: 133–138

    CAS  Google Scholar 

  • Wickstrom ML, Khan SA, Haschek WM, Wyman JF, Eriksson JE, Schaeffer DJ, Beasley VR (1995) Alterations in Microtubules, intermediate filaments and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23: 326–337

    Article  PubMed  CAS  Google Scholar 

  • Woitke P, Heinze R, Dewender M, Henning M, Kohl J-G (1999) Comparison of different methods for an evaluation of the toxicity of natural Microcystis blooms. Toxicon, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chorus, I. (2001). Contributions to Toxicity Testing and Toxin Analysis. In: Chorus, I. (eds) Cyanotoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59514-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59514-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64004-9

  • Online ISBN: 978-3-642-59514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics