Skip to main content

Breast Cancer and Use of Electric Power: Experimental Studies on the Melatonin Hypothesis

  • Chapter
The Pineal Gland and Cancer

Abstract

Two products of electric power, light at night and electromagnetic fields, can decrease production of melatonin by the pineal gland and thereby perhaps increase the risk of breast cancer. This electric power/breast cancer hypothesis, also known as the “melatonin hypothesis” has attracted a great deal of interest, in part because it is a plausible explanation for the increased tumor growth upon 50-Hz magnetic field (MF) exposure previously seen by two independent groups in chemical models of breast cancer in rats. In a large series of experiments in female Sprague-Dawley rats, we recently found that, consistent with the melatonin hypothesis, prolonged exposure to 50-Hz MFs at flux densities in the µTesla range decreases nocturnal melatonin plasma levels, increases the activity of ornithine decarboxylase in breast tissue, impairs immune surveillance, and enhances mammary tumor development and growth in response to the chemical carcinogen 7,12-dimethylbenz [α] anthracene. The results of our studies are described and discussed in this chapter, including their relevance for human risk assessment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum A, Mevissen M, Kamino K, Mohr U, Löscher W (1995) A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 μT magnetic field exposure. Carcinogenesis 16: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Beniashvili DS, Bilanishvili VG, Menabde MZ (1991) Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethyl urea. Cancer Lett 61: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Blask DE (1993) Melatonin in oncology. In Yu H-S, Reiter RJ (eds) Melatonin, Biosynthesis, physio¬logical effects, and clinical applications. CRC Press, Boca Raton, pp 447–475

    Google Scholar 

  • Bracken TD (1992) Experimental macroscopic dosimetry for extremely-low-frequency electric and magnetic fields. Bioelectromagnetics Supplement 1, 15–26

    Article  Google Scholar 

  • Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1998) Nocturnal excretion of a urinary melatonin metabolite in electric utility workers. Scand J Work Env Health 24; 183–189

    CAS  Google Scholar 

  • Byus CV, Pieper SE, Adey WR (1987) The effects of low-energy 60-Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis 8: 1385–1389

    Article  PubMed  CAS  Google Scholar 

  • Cain CD, Salvador EQ, Adey WR (1988) 60-Hz electric field prolongs ornithine decarboxylase activity response to 12-0-tetradecanoylphorbol-13-acetate (TPA) in C3H10T1/2 fibroblasts. Abstracts of the Bioelectromagnetics Society, 10th Annual Meeting, Stamford, CT 3

    Google Scholar 

  • Conti P, Giganti GE, Cifone MG, Alesse E, Ianni G, Reale M, Angeletti PU (1983) Reduced mitogenic stimulation of human lymphocytes by extremely low frequency electromagnetic fields. FEBS Lett 162: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Coogan PF, Clapp RW, Newcomb PA, Wenzl TB, Bogdan G, Mittendorf R, Baron JA, Longnecker MP (1996) Occupational exposure to 60-Hertz magnetic fields and risk of breast cancer in women. Epidemiology 7: 459–464

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen G, Halberg F (1992) Chronobiologic response modifiers and breast cancer development: classical background and chronobiologic tasks remaining. In vivo 6: 387–402

    PubMed  CAS  Google Scholar 

  • Cruse JM, Lewis REJ (1988) Immunomodulation of neoplasia. In: Homburger F, Cruse JM, Lewis REJ (eds) Progress in experimental tumor research. Karger, Basel

    Google Scholar 

  • Ekström T, Mild KH, Holmberg B (1998) Mammary tumours in Sprague-Dawley rats after initiation with DMBA followed by exposure to 50 Hz electromagnetic fields in a promotional scheme. Cancer Lett 123: 107–111

    Article  PubMed  Google Scholar 

  • Gallo F, Morale MC, Sambatoro D, Farinella Z, Scapagnini U, Marchetti B (1993) The immune system response during development and progression of carcinogen-induced rat mammary tumors: prevention of tumor growth and restoration of immune sytem responsiveness by thymopentin. Breast Cancer Res Treat 27: 221–237

    Article  PubMed  CAS  Google Scholar 

  • Gammon MD, John EM (1993) Recent etiologic hypotheses concerning breast cancer. Epidemiol Rev 15: 163–168

    PubMed  CAS  Google Scholar 

  • Gold LS, Slone TH, Stern BR, Manley NB, Ames BN (1992) Rodent carcinogens: Setting priorities. Science 258: 261 - 265

    Article  PubMed  CAS  Google Scholar 

  • Graham C, Gibertini M (1997) Human exposure to magnetic fields: Effects on melatonin, hormones, and immunity. In: Stevens RG, Wilson BW, Anderson LE (eds) The melatonin hypothesis. Breast cancer and use of electric power. Battelle Press, Columbus, p 479

    Google Scholar 

  • Huff J (1993) Issues and controversies surrounding qualitative strategies for identifying and forecasting cancer causing agents in the human environment. Pharmacol Toxicol Suppl 1: 12–27

    Article  Google Scholar 

  • Huggins C, Yang NC (1962) Induction and extinction of mammary cancer. Science 137: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Honma KI, Shigemitsu T, Shiga Y (1993) Effects of exposure to a circulatory polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 14: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga Y (1994) Horizontal or vertical 50-Hz, 1-μT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats. Neurosci Lett 168: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Kaune W, Davis S, Stephens R (1997) Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women. Final Report for Electric Power Research Institute

    Google Scholar 

  • Liburdy RP, Sloma TR Sokolic R, Yaswen P (1993) ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic on ER+ breast cancer cell proliferation. J Pineal Res 14: 89–97

    Google Scholar 

  • Litovitz TA, Krause D, Mullins JM (1991) Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochem Biophys Res Commun 178: 862–865

    Article  PubMed  CAS  Google Scholar 

  • Litovitz TA, Montrose CJ, Wang W (1992) Dose-response implications of the transient nature of electromagnetic-field-induced bioeffects. Bioelectromagnetics Supplement 1: 237–246

    Article  Google Scholar 

  • Loomis DP, Savitz DA, Ananth CV (1994) Breast cancer mortality among female electrical workers in the United States. J Natl Cancer Inst 86: 921–925

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Liburdy RP (1998) Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutation Res 410: 185 - 220

    Article  PubMed  Google Scholar 

  • Löscher W, Mevissen M (1994) Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis. Life Sei 54: 1531–1543

    Article  Google Scholar 

  • Löscher W, Mevissen M (1995) Linear relationship between flux density and tumor copromoting effect of prolonged magnetic field exposure in a breast cancer model. Cancer Lett 96: 175–180

    Article  PubMed  Google Scholar 

  • Löscher W, Mevissen M, Lehmacher W, Stamm A (1993) Tumor promotion in a breast cancer model by exposure to a weak alternating magnetic field. Cancer Lett 71: 75–81

    Article  PubMed  Google Scholar 

  • Löscher W, Wahnschaffe U, Mevissen M, Lerchl A, Stamm A (1994) Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. Oncology 51: 288–295

    Article  PubMed  Google Scholar 

  • Löscher W,Mevissen M,Häußler M (1997) Seasonal influence on 7,12-dimethylbenz[fl]anthracene-induced mammary carcinogenesis in Sprague Dawley rats under controlled laboratory conditions. Pharmacol Toxicol 81: 265–270

    Google Scholar 

  • Maestroni GJM (1993) The immunoneuroendocrine rol of melatonin. J Pineal Res 14: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJM, Conti A (1993) Melatonin in relation to the immune system. In: Yu H-S, Reiter RJ (eds) Melatonin. Biosynthesis, physiological effects, and clinical applications. CRC Press, Boca Raton, pp 289–309

    Google Scholar 

  • Mattson M-O, Mild KH, Rehnholm U ( 1993 a) Ornithine decarboxylase activity and polyamine levels in cell lines exposed to a 50-Hz sine-wave magnetic field. Abstracts of the Bioelectromagnetics Society, 15th Annual Meeting, Los Angeles, CA, pp 93–94

    Google Scholar 

  • Mattson M-O, Mild KH, Rehnholm U ( 1993 b) Ornithine decarboxylase activity in lymphoblastoid cell lines after 50 Hz sine-wave magnetic field exposure. Abstracts of the Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, Savannah, GA 3

    Google Scholar 

  • Mediavilla MD, San Martin S, Sänchez-Barcelö E J (1992) Melatonin inhibits mammary gland development in female mice. J Pineal Res 13: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Melhem MF, Kunz HW, Gill TJ (1991) Genetic control of susceptibility to diethylnitrosamine and dimethylbenzanthracene carcinogenesis in rats. Am J Pathol 139: 45–51

    PubMed  CAS  Google Scholar 

  • Mevissen M, Stamm A, Buntenkötter S, Zwingelberg R, Wahnschaffe U, Löscher W (1993) Effects of magnetic fields on mammary tumor development induced by 7,12-dimethylbenz(a)anthracene in rats. Bioelectromagnetics 14: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Mevissen M, Kietzmann M, Löscher W (1995) In vivo exposure of rats to a weak alternating magnetic field increases ornithine decarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA. Cancer Lett 90: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Mevissen M, Lerchl A, Löscher W (1996 a) Study on pineal function and DMBA-induced breast cancer formation in rats during exposure to a 100-mG, 50-Hz magnetic field. J Toxicol Environment Health 48: 101–117

    Google Scholar 

  • Mevissen M, Lerchl A, Szamel M, Löscher W (1996 b) Exposure of DMBA-treated female rats in a 50-Hz, 50 μTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Carcinogenesis 17: 903–910

    Google Scholar 

  • Mevissen M, Häußler M, Lerchl A, Löscher W (1998 a) Acceleration of mammary tumorigenesis by exposure of 7,12-dimethylbenz[a]anthracene-treated female rats in a 50-Hz, 100 μT magnetic field: replication study. J Toxicol Environment Health 53: 401–418

    Google Scholar 

  • Mevissen M, Häussler M, Szamel M, Emmendörffer A, Thun-Battersby S, Löscher W (1998 b) Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics 19: 259–270

    Google Scholar 

  • Mhatre MC, Shah PN, Juneja HS (1984) Effects of varying photoperiods on mammary morphology, DNA synthesis, and hormone profile in female rats. J Natl Cancer Inst 72: 1411–1416

    PubMed  CAS  Google Scholar 

  • NTP TR 489 (1998) NTP Technical Report on the Studies of Magnetic Field Promotion (DMBA Initiation) in Sprague-Dawley Rats (Gavage/Whole Body Exposure Studies). U.S. Department of Health and Human Services, Public Health Services, National Institutes of Health, Washington, DC

    Google Scholar 

  • O’Brien TG, Simsiman RC, Boutwell RK (1975) Induction of polyamine-biosynthetic enzymes in mouse epidermis and their specificity for tumor promotion. Cancer Res 35: 2426–2433

    PubMed  Google Scholar 

  • O’Brien TG (1976) The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis. Cancer Res 36: 2644–2653

    PubMed  Google Scholar 

  • Pfluger DH, Minder CE (1996) Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxy-melatonin sulfate excretion of Swiss railway workers. J Pineal Res 21: 91–100

    Article  PubMed  CAS  Google Scholar 

  • Phillips JL, Haggren W, Thomas WJ, Ishida-Jones T, Adey WR (1992) Magnetic field-induced changes in specific gene transcription. Biochim Biophys Acta 1132: 140–144

    PubMed  CAS  Google Scholar 

  • Polk C (1992) Dosimetry of extremely-low-frequency magnetic fields. Bioelectromagnetics Suppl 1: 209–235

    Article  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev 12: 151–180

    Article  CAS  Google Scholar 

  • Reiter RJ (1993) Static and extremely low frequency electromagnetic field exposure—Reported effects on the circadian production of melatonin. J Cell Biochem 51: 394–403

    PubMed  CAS  Google Scholar 

  • Rogers AE (1989) Factors that modulate chemical carcinogenesis in the mammary gland of the female rat. In: Jones TC, Mohr U, Hunt RD (eds) Integument and mammary glands. Springer- Verlag, Berlin, p 304

    Google Scholar 

  • Russell DH (1980) Ornithine decarboxylase as a biological and pharmacological tool. Pharmacology 20: 117–129

    Article  PubMed  Google Scholar 

  • Russo IH, Russo J (1978) Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a] anthracene. J Natl Cancer Inst 61: 1439–1449

    PubMed  CAS  Google Scholar 

  • Savitz DA, Ahlbom A (1994) Epidemiologic evidence on cancer in relation to residential and occupational exposures. In: Carpenter DO, Ayrapetyan S (eds) Biological effects of electric and magnetic fields. Academic Press, San Diego, p 233

    Google Scholar 

  • Selmaoui B, Touitou Y (1995) Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sei 57: 1351–1358

    Article  CAS  Google Scholar 

  • Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608

    Article  PubMed  CAS  Google Scholar 

  • Stevens RG (1987) Electric power use and breast cancer: a hypothesis. Am J Epidemiol 125: 556–561

    PubMed  CAS  Google Scholar 

  • Stevens RG, Davis S, Thomas DB, Anderson LE, Wilson BW (1992) Electric power, pineal function, and the risk of breast cancer. FASEB J 6: 853–860

    PubMed  CAS  Google Scholar 

  • Stevens RG (1993) Biologically based epidemiological studies of electric power and cancer. Environment Health Perspect Suppl 4: 93–100

    Google Scholar 

  • Thomas DB (1993) Breast cancer in man. Epidemiol Rev 15: 220–231

    PubMed  CAS  Google Scholar 

  • Tynes T (1993) Electromagnetic fields and male breast cancer. Biomed Pharmacother 47: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Vainio H, Wilbourn J (1993) Cancer etiology: agents causally associated with human cancer. Pharmacol Toxicol Suppl 1: 4–11

    Article  Google Scholar 

  • Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 6: 3177–3185

    PubMed  CAS  Google Scholar 

  • Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45: 3415–3443

    PubMed  CAS  Google Scholar 

  • Wertheimer N, Leeper E (1982) Adult cancer related to electrical wires near the home. Int J Epidemiol 11: 345–355

    Article  PubMed  CAS  Google Scholar 

  • Wertheimer N, Leeper E (1994) Are electric or magnetic fields affecting mortality from breast cancer in women? J Nat Cancer Inst 86: 1797

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löscher, W. (2001). Breast Cancer and Use of Electric Power: Experimental Studies on the Melatonin Hypothesis. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics