Skip to main content

Melatonin Cancer Therapy

  • Chapter
Book cover The Pineal Gland and Cancer

Abstract

Melatonin prevents and delays chemical carcinogenisis and cancer growth in vivo in the mouse and rat. Blind people have robust, albeit mostly free-running melatonin circadian rhythms and they are at lower risk for the development of many, if not all, cancers. Women with breast cancer and men with prostate cancer have diminished nighttime melatonin secretion.

Each proven melatonin biological effect — the transduction of circadian and circannual temporal information from the environmental light/dark schedule to each cell within the body, the induction and enhancement of sleep, the diminishment of core body temperature, and the resetting of circadian clocks — is entirely dependent upon the temporal context, i.e., the circadian/circannual stage of melatonin availability/administration. The host-cancer balance is likewise rhythmically coordinated in time by endogenous and exogenous circadian and circannual internal pacemakers and external zeitgebers. Each of the targets of cancer treatment is differentially available in both normal host cells and cancer cells at different times within these biological cycles. This chronobiology is faithfully reflected by the fact that the circadian/circannual timing of cancer chemotherapy determines to a medically meaningful extent the damage done to normal cells, the amount of drug that can be safely given, and the antitumor efficacy of that drug.

Giving a chronobiotic agent, like melatonin, without regard to its circadian/ circannual scheduling is not logical and should not be expected to reveal its true utility as an anticancer agent. Despite the fact that the timing of melatonin has been either ignored or stipulated arbitrarily, clinical anticancer activity has been uncovered. Lissoni’s work shows an anticancer effect in a variety of solid tumors and his work has been confirmed by others for melanoma and renal cell carcinoma. In many of these trials, meaningful clinical benefit, as well as antitumor activity, has been demonstrated.

It will be essential to the ultimate determination of melatonin’s place in cancer therapy to determine the circadian schedule that optimizes its medical benefit. Such clinical studies must employ a double-blind, placebo-controlled comparison among times of day for melatonin treatment, alone and in combination with surgery, radiation, chemotherapy, and/or biological therapies. Measures of quality of life, fatigue, the latency timing, quality and quantity of daily sleep, and the timing and intensity of daily activity should be assessed, along with melatonin’s anticancer activity, in each of these studies. Without chronobiologically adequate clinical studies, the use of melatonin will continue to depend upon belief and opinion rather than upon knowledge and understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendt J, Skene D, Middleton B, Deacon S (1997) Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms 12: 604–617

    Article  PubMed  CAS  Google Scholar 

  • Barni S, Lissoni P, Cazzaniga M Ardizzoia A, Meregalli S Fossati V, Fumagalli L, Brivio F, Tancini G (1995) A randomized study of low-dose subcutaneous interleukin-2 plus melatonin versus supportive care alone in metastatic colorectal cancer patients progressing under 5-fluorouracil and folates. Oncology 52: 243–245

    Article  PubMed  CAS  Google Scholar 

  • Bartlett P, Haus E, Tuason T, Sacket-Lundeen L, Lakatua D (1984) Circadian rhythm in number of erythroid and granulocytic colony forming units in culture (ECFU-C and GCFU-C) in bone marrow of BDF1 male mice. In: Haus E, Kabat HF (eds) Proc 15th International Conference on Chronobiology. S. Karger, Basel, pp 160–164

    Google Scholar 

  • Bartsch C, Bartsch H, Jain A, Laumas K, Wetterberg L (1981) Urinary melatonin levels in human breast cancer patients. J Neural Transm 52: 281–294

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Fliichter S,Attanasio A, Gupta D (1985) Evidence for modulation of melatonin secretion in men with benign and malignant tumors of the prostate: relationship with the pituitary hormones. J Pineal Res 2: 121–132

    CAS  Google Scholar 

  • Bartsch C, Bartsch H, Fuchs U, Lippert TH, Bellmann O, Gupta D (1989) Stage-dependent depres-sion of melatonin in patients with primary breast cancer: correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer 64: 426–433

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Bellmann O, Lippert TH (1991) Depression of serum melatonin in patients with primary breast cancer is not due to an increased peripheral metabolism. Cancer 67: 1681–1684

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Schmidt A, Ilg S, Bichler K, Fliichter S (1992) Melatonin and 6-sulfatoxy- melatonin circadian rhythms in serum and urine of primary prostate cancer patients: evidence for reduced pineal activity and relevance of urinary determinations. Clin Chim Acta 209: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Blask D (1993) Melatonin in oncology. In:Yu H, Reiter RJ (eds) Melatonin: Biosynthesis, Physio-logical Effects, and Clinical Applications. CRC Press, Boca Raton, FL, pp 448–464

    Google Scholar 

  • Blask DE (1997) Systemic, cellular, and molecular aspects of melatonin action on experimental breast carcinogenesis. In: Stevens R, Wilson B, and Anderson L (eds) The Melatonin Hypothesis - Breast Cancer and the Use of Electric Power. Battelle Press, Columbus, OH, pp 189–230

    Google Scholar 

  • Blask DE, Hill SM (1986) Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl 21: 433–449

    PubMed  CAS  Google Scholar 

  • Blumenfeld C (1943) Studies of normal and of abnormal mitotic activity. Arch of Path 35: 667–673

    Google Scholar 

  • Brainard G, Rollag M, Hanifin J (1997) Photic regulation of melatonin in humans: ocular and neural signal transduction. J Biol Rhythms 12: 537–546

    Article  PubMed  CAS  Google Scholar 

  • Brown WR (1991) A review and mathematical analysis of circadian rhythms in cell proliferation in mouse, rat, and human epidermis. J Invest Dermatol 97: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Buchi KN, Moore JG, Hrushesky WJM, Sothern RB, Rubin NH (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101: 410–415

    PubMed  CAS  Google Scholar 

  • Cagnacci A, Elliott J, Yen S (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75: 447–452

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Soldani R, Laughlin G, Yen S (1996) Modification of circadian body temperature rhythm during the luteal menstrual phase: role of melatonin. J Appl Physiol 80: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Kräuchi K, Wirz- Justice A, Volpe A (1997) Homeostatic versus circadian effects of melatonin on core body temperature in humans. J Biol Rhythms 12: 509–517

    Article  PubMed  CAS  Google Scholar 

  • Cassone V (1990) Melatonin: time in a bottle. Oxford Rev Reprod Biol 12: 319–367

    CAS  Google Scholar 

  • Cassone V, Natesan A (1997) Time and time again: the phylogeny of melatonin as a transducer of biological time. J Biol Rhythms 12: 489–497

    Article  PubMed  CAS  Google Scholar 

  • Cooper Z (1939) Mitotic rhythm in human epidermis. J Invest Derm 2: 289–300

    Article  Google Scholar 

  • Cos S, Blask D (1990) Effects of the pineal hormone melatonin on the anchorage-independent growth of human breast cancer cells (MCF-7) in a clonogenic culture system. Cancer Lett 50: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Cos S, Blask D (1994) Melatonin modulates growth factor activity in MCF-7 human breast cancer cells. J Pineal Res 17: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Cos S, Sanchez-Barcelo E (1994) Differences between pulsatile or continuous exposure to melatonin on MCF-7 human breast cancer cell proliferation. Cancer Lett 85: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Cos S, Sanchez-Barcelo E (1995) Melatonin inhibition of MCF-7 human breast cancer cells growth: influence of cell proliferation rate. Cancer Lett 93: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Czeisler C (1997) Commentary: evidence for melatonin as a circadian phase-shifting agent. J Biol Rhythms 12: 618–623

    Article  PubMed  CAS  Google Scholar 

  • Czeisler C, Kronauer R, Allan J, Duffy J, Jewett M, Brown E, Ronda J (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244: 1328–1333

    Article  PubMed  CAS  Google Scholar 

  • Dahlitz M, Alvarez B, Vignau J, English J, Arendt J, Parkes J (1991) Delayed sleep phase syndrome response to melatonin. Lancet 337: 1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Daneryd P, Svanberg E, Korner U, Lindholm E, Sandstrom R, Brevinge H, Petterson C, Boseaus I Lundholm K (1998) Protection of metabolic and exercise capacity in unselected weight-losing cancer patients following treatment with recombinant erythropoietin: a randomized prospec¬tive study. Cancer Res 58: 5374–5379

    PubMed  CAS  Google Scholar 

  • Danforth D, Tamarkin L, Mulvihill J, Bagley C, Lippman M (1985) Plasma melatonin and the hormone-dependency of human breast cancer. J Clin Oncol 3: 941–948

    PubMed  Google Scholar 

  • Dauchy RT, Sauer LA, Blask DE, Vaughan GM (1997) Light contamination during the dark phase in “photoperiodically controlled” animal rooms: effect on tumor growth and metabolism in rats. Lab Anim Sci 47: 511–518

    PubMed  CAS  Google Scholar 

  • Dawson D, Encel N (1993) Melatonin and sleep in humans. J Pineal Res 15: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Durie BMG, Salmon SE, Russell DH (1977) Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Res 36: 214–221

    Google Scholar 

  • Feychting M, Österlund B, Ahlbom A (1998) Reduced cancer incidence among the blind. Epidemiology 9: 490–494

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Norton D, Woodward S, Cornelissen G, Halberg F (1994) Circadian rhythms of hot flashes and body temperature in menopausal women. In: Zeisberger E, Schonbaum E, Lomax P (eds) Thermal Balance in Health and Disease. Advances in Pharmacological Sciences. Springer, New York

    Google Scholar 

  • Freedman M, Lucas R, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sainz M, Halberg F (1966) Mitotic rhythms in human cancer reevaluated by electronic computer programs. Evidence for chronopathology. J Natl Cancer Inst 37: 279–292

    PubMed  CAS  Google Scholar 

  • Garfinkel D, Laudon M, Nof D, Zisapel N (1995) Improvement of sleep quality in elderly people bycontrolled-release melatonin. Lancet 346: 541–544

    Article  PubMed  CAS  Google Scholar 

  • Glaspy J (1997) Fatigue may be most under-recognized, undertreated cancer-related symptom. Oncology News Int 6: 30–38

    Google Scholar 

  • Gonzalez R, Sanchez A, Ferguson J A, Balmer C, Daniel C, Cohn A, Robinson WA (1991) Melatonin therapy of advanced human malignant melanoma. Melanoma Res 1: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Hahn R (1991) Profound bilateral blindness and the incidence of breast cancer. Epidemiology 2: 208–210

    Article  PubMed  CAS  Google Scholar 

  • Haimov I, Lavie P, Laudon M, Herer P, Vigder C, Zisapel N (1995) Melatonin replacement therapy of elderly insomniacs. Sleep 18: 598–603

    PubMed  CAS  Google Scholar 

  • Halberg F, Bingham C, Cornelissen G (1993) Clinical trials: the larger the better? Chronobiologia 20: 193–211

    PubMed  CAS  Google Scholar 

  • Haus E, Lakatua DJ, Swoyer J, Sackett LL (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467–517

    Article  PubMed  CAS  Google Scholar 

  • Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 48: 6121–6126

    PubMed  CAS  Google Scholar 

  • Hill SM, Spriggs L, Simon M, Muraoka H, Blask DE (1992) The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett 64: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Holdaway I, Mason B, Gibbs E, Rajasoorya C, Hopkins K (1991) Seasonal changes in serum melatonin in women with previous breast cancer. Br J Cancer 64: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Hrushesky WJM (1985) Circadian timing of cancer chemotherapy. Science 228: 73–75

    Article  PubMed  CAS  Google Scholar 

  • Hrushesky WJM (ed) (1994) Circadian Cancer Therapy. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hrushesky WJM, Bjarnason G (1993 a) Circadian cancer therapy. J Clin Oncol 11: 1403–1417

    Google Scholar 

  • Hrushesky WJM, Bjarnason GA (1993b) The application of circadian chronobiology to cancer chemotherapy. In: DeVita VT, Hellman Sand, Rosenberg SA (eds) Cancer: Principles & Practice of Oncology. JB Lippincott, Philadelphia, pp 2666–2686

    Google Scholar 

  • Hrushesky WJM, Murphy G (1977) Current status of the therapy of advanced renal carcinoma. J Surg Oncol 9: 277

    Article  PubMed  CAS  Google Scholar 

  • Hrushesky WJM, Merdink J, Abdel-Monem M (1983) Circadian rhythmicity characterizes monoacetyl polyamine urinary excretion. Cancer Res 43: 3944–3947

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM, Haus E, Lakatua DJ, Halberg F, Langevin T, Kennedy BJ (1984) Marker rhythms for cancer chrono-chemotherapy. In: Haus E, Kabat HF (eds) Chronobiology 1982–1983. Karger, New York, pp 493–499

    Google Scholar 

  • Hrushesky WJM, von Roemeling R, Lanning R, Rabatin J (1990) Circadian-shaped infusion of floxuridine for progressive metastatic renal cell carcinoma. J Clin Oncol 8: 1504–1513

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM, Langevin T, Kim YJ, Wood PA (1994) Circadian dynamics of tumor necrosis factor-α (cachectin) lethality. J Exp Med 180: 1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Janne J, Poso H, Raina A (1978) Polyamines in rapid growth and cancer. Biochem Biophys Acta 473: 241–243

    PubMed  CAS  Google Scholar 

  • Killman SA, Cronkite EP, Fliedner TM, Bond VP (1962) Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitosis. Blood 19: 743–750

    Google Scholar 

  • Klevecz RR, Shymko RM, Blumenfeld D, Braly PS (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47: 6267–6271

    PubMed  CAS  Google Scholar 

  • Kräuchi K, Wirz-Justice A (1994) Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol 267: R819–R829

    PubMed  Google Scholar 

  • Kräuchi K, Cajochen C, Wirz-Justice (1997 a) Melatonin and orthostasis: interactions of posture with subjective sleepiness, heart rate and skin and core temperature. Sleep Res 26: 79

    Google Scholar 

  • Kräuchi K, Cajochen C, Wirz-Justice A (1997b) A relationship between heat loss and sleepiness: effects of postural change and melatonin administration. J Appl Physiol 83: 134–139

    PubMed  Google Scholar 

  • Laerum OD, Aardal NP (1981) Chronobiological aspects of bone marrow and blood cells. In: von Mayersbach H, Scheving LE, Pauli JE (eds) 11th International Congress of Anatomy, part C, Biological rhythms in structure and function. Alan R. Liss, New York, pp 87–97

    Google Scholar 

  • Laerum OD, Sletvold O, Riise T (1988) Circadian and circannual variation of the cell cycle distribution in the mouse bone marrow. Chronobiol Int 5: 19–35

    Article  PubMed  CAS  Google Scholar 

  • Laerum OD, Smaaland R (1989) Circadian and infradian aspects of the cell cycle: From past to future. Chronobiologia 16: 441–453

    PubMed  CAS  Google Scholar 

  • Laerum OD, Smaaland R, Sletvold O (1989) Rhythms in blood and bone marrow: potential therapeutic implications. In: Lemmer B (ed) Chronopharmacology: cellular and biochemical interactions. Marcel Dekker, New York, pp 371–393

    Google Scholar 

  • Langevin T, Young J, Walker K, von Roemeling R, Nygaard S, Hrushesky WJM (1987) The toxicity of tumor necrosis factor (TNF) is reproducibly different at specific times of the day. Proc Ann Meet Am Assoc Cancer Res 28: A1580

    Google Scholar 

  • Lapin V, Ebels I (1976) Effects of some low molecular weight sheep pineal fractions and melatonin on different tumors in rats and mice. J Neural Transm 52: 269–279

    Google Scholar 

  • Lerner A, Case J, Takahashi Y, Lee T, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80: 2587

    Article  CAS  Google Scholar 

  • Lévi FA, Zidani R, Vannetzel JM, Perpoint B, Focan C, Faggiuolo R, Chollet P, Garufi C, Itzhaki M, Dogliotti L, Iacobelli S, Adam R, Kunstlinger F, Gastiaburu J, Bismuth H, Jasmin C, Misset J (1994) Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J Natl Cancer Inst 86: 1608–1617

    Article  PubMed  Google Scholar 

  • Lewy A, Sack R (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms 12: 588–594

    Article  PubMed  CAS  Google Scholar 

  • Lieberman H, Waldhauser F, Garfield G, Lynch H, Wurtman R (1984) Effects of melatonin on human mood and performance. Brain Res 323: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Tancini G, Crispino S, Paolorossi F, Lucini V, Mariani M, Cattaneo G, Esposti D, Esposti G (1987) Clinical study of melatonin in untreatable advanced cancer patients. Tumori 73: 475 - 480

    PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Crispino S, Tancini G, Fraschini F (1989) Endocrine and immune effects of melatonin therapy in metastatic cancer patients. Eur J Cancer Clin Oncol 25: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Cattaneo G, Tancini G, Esposti G, Esposti D, Fraschini F (1991) Clinical results with the pineal hormone melatonin in advanced cancer resistant to standard antitumor therapies. Oncology 48: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Ardizzoia A, Paolorossi F, Crispino S, Tancini G, Tisi E, Archili C, De Toma D, Pipino G, Conti A, Maestroni G (1992) Randomized study with the pineal hormone melatonin versus supportive care alone in advanced nonsmall cell lung cancer resistant to a first-line chemotherapy containing cisplatin. Oncology 49: 336–339

    Article  PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Ardizzoia A, Tancini G, Conti A, Maestroni G (1994 a) A randomized study with the pineal hormone melatonin versus supportive care alone in patients with brain metastases due to solid neoplasms. Cancer 73: 699–701

    Google Scholar 

  • Lissoni P, Barni S, Cazzaniga M, Ardizzoia A, Rovelli F, Brivio F, Tancini G (1994b) Efficacy of the concomitant administration of the pineal hormone melatonin in cancer immunotherapy with low-dose IL-2 in patients with advanced solid tumors who had progressed on IL-2 alone. Oncology 51: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Lissoni P, Meregalli S, Fossati V, Paolorossi F, Barni S, Tancini G, Frigerio F (1994 c) A randomized study of immunotherapy with low-dose subcutaneous interleukin-2 plus melatonin vs. chemotherapy with cisplatin and etoposide as first-line therapy for advanced nonsmall cell lung cancer. Tumori 80: 464–467

    Google Scholar 

  • Lissoni P, Ardizzoia A, Barni S, Paolorossi F, Tancini G, Meregalli S, Esposti G, Zubelewicz B, Braczowski R (1995 a) A randomized study of tamoxifen alone versus tamoxifen plus melatonin in estrogen receptor-negative heavily pretreated metastatic breast cancer patients. Oncol Rep 2: 871–873

    Google Scholar 

  • Lissoni P, Barni S, Fossati V, Ardizzoia A, Cazzaniga M, Tancini G, Frigerio F (1995 b) A randomized study of neuroimmunotherapy with low-dose subcutaneous interleukin-2 plus melatonin compared to supportive care alone in patients with untreatable metastatic solid tumour. Support Care Cancer 3: 194–197

    Google Scholar 

  • Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V, Maestroni G (1996 a) Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology 53: 43–46

    Google Scholar 

  • Lissoni P, Brivio O, Brivio F, Barni S, Tancini G, Crippa D, Meregalli S (1996b) Adjuvant therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. J Pineal Res 21: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Lucas R, Freedman M, Munoz M, Garcia-Fernández J, Foster R (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Mauer AM (1965) Diurnal variation of proliferative activity in the human bone marrow. Blood 26: 1–7

    PubMed  CAS  Google Scholar 

  • Mclntyre I, Norman T, Burrows G, Armstrong S (1989) Human melatonin suppression by light is intensity dependent. J Pineal Res 6: 149–156

    Article  Google Scholar 

  • Mhatre M, Shah P, Juneja H (1984) Effect of varying photoperiods on mammary morphology, DNA synthesis, and hormone profile in female rats. J Natl Cancer Inst 72: 1411–1415

    PubMed  CAS  Google Scholar 

  • Miaskowski C, Portenoy R (1998) Update on the assessment and management of cancer-related fatigue. Principles and Practice of Supportive Oncology Updates 1: 1–10

    Google Scholar 

  • Morley AA (1966) A neutrophil cycle in healthy individuals. Lancet ii: 1220

    Google Scholar 

  • Mormont M, Claustrat B, Waterhouse J, Touitou Y, Levi F (1998) Clinical relevance of circadian rhythm assessment in cancer patients. In: Touitou Y (ed) Biological Clocks. Mechanisms and applications. Elsevier Science, Amsterdam, pp 497–505

    Google Scholar 

  • Nash RE, Echave Llanos JM (1971) Circadian variation in DNA synthesis of fast-growing and slow-growing hepatoma: DNA synthesis rhythm in hepatoma. J Natl Cancer Inst 47: 1007–1012

    PubMed  CAS  Google Scholar 

  • Neri B, Fiorelli C, Moroni F, Nicita G, Paolotti M Ponchietti R, Raugel A, Santoni G, Trippitelli A, Grechi G (1994) Modulation of human lymphoblastoid interferon activity by melatonin in metastatic renal cell carcinoma. A phase II study. Cancer 73: 3015–3019

    Article  PubMed  CAS  Google Scholar 

  • Oldani A, Ferini-Strambi L, Zucconi M, Stankov B, Fraschini F, Smirne S (1994) Melatonin and delayed sleep phase syndrome: ambulatory polygraphic evaluation. Neuroreport 6: 132–134

    Article  PubMed  CAS  Google Scholar 

  • Panzer A, Wiljoen M (1997) The validity of melatonin as an oncostatic agent. J Pineal Res 22: 184–202

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh C (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25: 159–184

    PubMed  CAS  Google Scholar 

  • Ponassi A, Morra L, Bonanni F, Molinari A, Gigli G, Vercelli M, Sacchetti C (1979) Normal range of blood colony-forming cells (CFU-C) in humans: influence of experimental conditions, age, sex, and diurnal variations. Blut 39: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Raloff J (1998) Does light have a dark side? Nighttime illumination might elevate cancer risk. Science News 154: 248–250

    Article  Google Scholar 

  • Reiter RJ (1988) Pineal gland, cellular proliferation and neoplastic growth: an historical account. In: Gupta D, Attanasio A, Reiter RJ (eds) The pineal gland and cancer. Brain Research Promotion, Tübingen, pp 41–64

    Google Scholar 

  • Reiter RJ, Tan TX, Poeggeler B, Menendez-Pelaez A, Chen LD, Saarela S (1994) Melatonin as a free-radical scavenger: Implications for aging and age-related processes. Ann NY Acad Sci 719: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Reppert S (1997) Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms 12: 528–531

    Article  PubMed  CAS  Google Scholar 

  • Rivard G, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet ii: 1264–1266

    Google Scholar 

  • Robinson W, Dreiling L, Gonzalez R, Balmer C (1995) Treatment of human metastatic malignant melanoma with high dose oral melatonin. In: Fraschini F, Reiter RJ, Stankov B (eds) The Pineal Gland and Its Hormones: Fundamentals and Clinical Perspectives. Plenum Press, New York, pp 219–225

    Chapter  Google Scholar 

  • Ross DD, Pollak A, Akman SA, Bachur NR (1980) Diurnal variation of circulating human myeloid

    Google Scholar 

  • progenitor cells. Exp Hematol 8:954–960

    Google Scholar 

  • Rubin NH, Hokanson JW, Mayschak JW, Tsai TH, Barranco SC, Scheving LE (1983) Several cytokinetic methods for showing circadian variation in normal murine tissue and in a tumor. Am J Anat 168: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Sanchez S, Hrushesky W, Wood P, Vyzula R (1993) Host-tumor balance depends upon IL-2 circadian timing. Proc AACR, Orlando, FL

    Google Scholar 

  • Scheving LE (1959) Mitotic activity in the human epidermis. Anat Rec 135: 7–19

    Article  PubMed  CAS  Google Scholar 

  • Scheving LE (1981) Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. In: von Mayersbach H, Scheving LE, Pauli JE (eds) 11th International Congress of Anatomy, part C, Biological rhythms in structure and function. Alan R. Liss, New York, pp 39–79

    Google Scholar 

  • Scheving LE, Burns ER, Pauli JE, Tsai TH (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat Rec 191: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Scheving LE, Tsai TS, Feuers RJ, Scheving LA (1989) Cellular mechanisms involved in the action of anticancer drugs. In: Lemmer B (ed) Chronopharmacology: cellular and biochemical interactions. Marcel Dekker, New York, pp 317–369

    Google Scholar 

  • Schipper H, Turley E, Baum M (1996) A new biological framework for cancer research. Lancet 348: 1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Shanahan T, Zeitzer J, Czeisler C (1997) Resetting the melatonin rhythm with light in humans. J Biol Rhythms 12: 556–567

    Article  PubMed  CAS  Google Scholar 

  • Skene D, Bojkowski C, Currie J, Wright J, Boulter P, Arendt J (1990) 6-sulphatoxymelatonin production in breast cancer patients. J Pineal Res 8: 269–276

    Google Scholar 

  • Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern R, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77: 2603–2611

    PubMed  CAS  Google Scholar 

  • Smaaland R, Lote K, Sothern RB, Laerum OD (1993) DNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate intrapatient variation depending on circadian stage of cell sampling. Cancer Res 53: 3129–3138

    PubMed  CAS  Google Scholar 

  • Starr KW (1970) Growth and new growth: environmental carcinogens in the process of ontogeny. Prof Clin Cancer 4: 1–29

    CAS  Google Scholar 

  • Stoney PJ, Halberg F, Simpson HW (1975) Circadian variation in colony-forming ability of presumably intact murine bone marrow cells. Chronobiologia 2: 319–324

    PubMed  CAS  Google Scholar 

  • Tähti E (1956) Studies of the effect of x-radiation on 24-hour variations in the mitotic activity in human malignant tumors. Acta Path Microbiol Scand, Suppl 117: 1–61

    Google Scholar 

  • Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B (1981) Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41: 432–436

    Google Scholar 

  • Tamarkin L, Danforth D, Lichter A, DeMoss E, Cohen M, Chabner B, Lippman M (1982) Decreased nocturnal plasma melatonin peak in patients with estrogen recepter positive breast cancer. Science 216: 1003–1005

    Article  PubMed  CAS  Google Scholar 

  • Tzischinsky O, Lavie P (1994) Melatonin possesses time-dependent hypnotic effects. Sleep 17: 638–645

    PubMed  CAS  Google Scholar 

  • Tzischinsky O, Shlitner A, Lavie P (1993) The association between the nocturnal sleep gate and nocturnal onset of urinary 6-sulfatoxymelatonin. J Biol Rhythms 8: 199–209

    Article  PubMed  CAS  Google Scholar 

  • Ubeda A, Trillo MA, House DF, Blackman CF (1995) Melatonin enhances junctional transfer in normal CH3H/10T1/2 cells. Cancer Lett 91: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Vollrath L, Semm P, Gammel G (1981) Sleep induction by intranasal application of melatonin. Adv Biosci 29: 327–329

    Google Scholar 

  • Voutilainen A (1953) Über die 24-Stunden-Rhythmik der Mitosefrequenz in malignen Tumoren. Acta Path Microbiol Scan 99 (suppl.): 1–104

    CAS  Google Scholar 

  • Waalen J (1993) Nighttime light studied as possible breast cancer risk. J Natl Cancer Inst 85: 1712–1713

    Article  PubMed  CAS  Google Scholar 

  • Wehr TA (1992) Improvement of depression and triggering of mania by sleep deprivation. J Am

    Google Scholar 

  • Med Assoc 267:548–551

    Google Scholar 

  • Wehr TA (1997) Melatonin and seasonal rhythms. J Biol Rhythms 12: 518–527

    Article  PubMed  CAS  Google Scholar 

  • Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. New Engl J Med 340: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Wood P, Hrushesky W (1996) Circadian rhythms and cancer chemotherapy. Crit Rev Eukaryotic

    Google Scholar 

  • Gene Expression 6:299–343

    Google Scholar 

  • Wurtman R, Zhdanova I (1995) Improvement of sleep quality by melatonin. Lancet 346: 1491

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Diasio R (1994) Pharmacologic basis for circadian pharmacodynamics. Hrushesky WJM (ed) Circadian Cancer Therapy. CRC Press, Boca Raton, FL, pp 61–103

    Google Scholar 

  • Zhdanova I, Wurtman R, Lynch H (1995) Sleep-inducing effects of low doses of melatonin ingested in the evening. Clin Pharmacol Ther 57: 552–558

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hrushesky, W.J.M. (2001). Melatonin Cancer Therapy. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics