Skip to main content

Reactive Oxygen Species, DNA Damage, and Carcinogenesis: Intervention with Melatonin

  • Chapter
The Pineal Gland and Cancer

Abstract

A variety of cancer-inducing agents cause cancer by virtue of their ability to damage DNA via free radical mechanisms. Damaged DNA is a primary cause of cancer if it goes unrepaired and mutates. Free radicals, many of which are oxygen metabolites, indiscriminately attack both mitochondrial and nuclear DNA when they are generated in the vicinity of these molecules. Melatonin is a highly effective free radical scavenger which protects DNA from the damage inflicted by free radicals; the attack of molecules by reduced oxygen metabolites is referred to as oxidative stress. In order for any antioxidant to protect DNA from oxidative stress it must be essentially surrounding the genome, since most free radicals that destroy DNA are generated in the immediate vicinity (most often within 10 angstroms) of the DNA. Melatonin is known to get into the nucleus, and studies, using a variety of techniques, have shown the indole to reduce DNA damage due to a variety of carcinogens, e.g., safrole, ionizing radiation, chromium, etc. In this context melatonin is capable of reducing cancer initiation. Besides the primary damage to DNA which initiates a tumor, the progressive accumulation of oxidatively altered DNA is believed to be involved in the transition of benign to malignant tumor cells. Due to melatonin antioxidant activities, the indole may also reduce this process and thereby lower the degree of malignancy of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85:2706–2708.

    Article  PubMed  CAS  Google Scholar 

  • Anderson D (1996) Antioxidant defenses against reactive oxygen species causing genetic and other damage. Mutat Res 350:103–108.

    Article  PubMed  Google Scholar 

  • Ames BN (1983) Dietary carcinogens and anti-carcinogens (oxygen radicals and degenerative diseases). Science 224:1256–1264.

    Article  Google Scholar 

  • Ames BN (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214:41–46.

    Article  PubMed  CAS  Google Scholar 

  • Antolin I, Rodriquez C, Sainz RM, Mayo JC, Uria H, Kotler ML, Rodriquez-Colunga MJ, Toliva D, Menendez-Pelaez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890.

    PubMed  CAS  Google Scholar 

  • Barlow-Walden LR, Reiter RJ, Pablos MI, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 24:497–502.

    Article  Google Scholar 

  • Barrows LR, Magee PN (1982) Nonenzymatic methylation of DNA S-adenosylmethionine in vitro. Carcinogenesis 3:349–351.

    Article  PubMed  CAS  Google Scholar 

  • Beneditti A, Comporti M, Esterbauer H (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 620:281–296.

    Google Scholar 

  • Blask DE (1993) Melatonin in oncology. In: Yu HS, Reiter RJ (eds) Melatonin, CRC Press, Boca Raton, pp 447–476.

    Google Scholar 

  • Brambilla G, Sciaba L, Faggin P, Manra A, Marinari V, Ferro M, Esterbauer H (1986) Cytotoxicity, DNA fragmentation and sister chromatid exchange in Chinese hamster ovary cells exposed to lipid peroxidation product 4-hydroxynonenal and homologous aldehydes. Mutat Res 171: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Cadet J, Berger M (1985) Radiation-induced decomposition of the purine bases within DNA and related model compounds. Int J Radiat Biol 47:127–143.

    Article  CAS  Google Scholar 

  • Cagnoli CM, Atabay C, Kharlamov E, Manev H (1995) Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 18:222–228.

    Article  PubMed  CAS  Google Scholar 

  • Cathcart R, Schwiers E, Saul RL, Ames BN (1984) Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Nat Acad Sci USA 81:5633–5637.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti P, Amstad P, Larsson R, Shah G, Krupitza G (1990) Mechanisms of oxidant carcinogenesis. Prog Clin Biol Res 347:183–186.

    PubMed  CAS  Google Scholar 

  • Cochrane CG, Schraufstatter IV, Hyslop P, Jackson J (1988) Cellular and biochemical events in oxidant injury. In: Halliwell B (ed) Oxygen Radical and Tissue Injury, Upjohn, New York, pp 49–54.

    Google Scholar 

  • Cuzzocrea S, Zingarelli B, Constantino G, Caputi AP (1998) Protective effect of melatonin in a non- septic shock model induced by zymosan in the rat. J Pineal Res 25:24–33.

    Article  PubMed  CAS  Google Scholar 

  • Daniels WMU, Reiter RJ, Melchiorri D, Sewerynek E, Pablos MI, Ortiz GG (1995) Melatonin counteracts lipid peroxidation induced by carbon tetrachloride but does not restore glucose-6-phos- phatase activity. J Pineal Res 19:1–6.

    Article  PubMed  CAS  Google Scholar 

  • De La Lastra CA, Cabeza J, Motilva V, Martin MJ (1997) Melatonin protects against gastric ischemia-reperfusion injury in rats. J Pineal Res 23:47–52.

    Article  Google Scholar 

  • Degan P, Shigenaga MK, Park EM, Alperin PE, Ames BN (1991) Immunoaffinity isolation of 8-hydroxy-2’-deoxyguanosine and 8-hydroxyguanine and quantitation of 8-hydroxy-2’-deoxy- guanosine in DNA by polyclonal antibodies. Carcinogenesis 12:865–871.

    Article  PubMed  CAS  Google Scholar 

  • Escames G, Guerrero JM, Reiter RJ, Garcia J J, Munoz-Hoyos A, Ortiz GG, Oh CS (1997) Melatonin and vitamin E limit nitric oxide-induced lipid peroxidation in rat brain homogenates. Neurosci Lett 230:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Eckl P, Ortner A (1990 a) Possible mutagens derived from lipids and lipid precursors. Mutat Res 238:223–233.

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Zollner H, Schaur RJ (1990 b) Aldehydes formed by lipid peroxidation: mechanisms of formation, occurrence and determination. In: Vigo-Pelfrey C (ed) Membrane Lipid Oxidation, Vol I, CRC Press, Boca Raton, pp 239–283.

    Google Scholar 

  • Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522.

    PubMed  CAS  Google Scholar 

  • Finnochiarro LME, Glikin GC (1997) Intracellular melatonin distribution in cultured cell lines. J Pineal Res 24:22–34.

    Article  Google Scholar 

  • Floyd RA, West MS, Eneff KL, Schneider JE (1991) Methylene blue plus light mediates 8-hydroxyguanine formation in DNA. Arch Biochem Biophys 273:106–111.

    Article  Google Scholar 

  • Fraga CG, Tappel AL (1988) Damage to DNA concurrently with lipid peroxidation in rat liver slices. Biochem J 252:893–896.

    PubMed  CAS  Google Scholar 

  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87:4533–4537.

    Article  PubMed  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, OH LS, Munoz-Hoyos A (1997) Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett 408:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang L, Yu BP, Escames G (1998) Melatonin enhances tamoxifen’s ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membrane Biol 162:59–62.

    Article  CAS  Google Scholar 

  • Gilad E. Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxy-nitrite. Life Sci 60: PL169–PL174

    Article  Google Scholar 

  • Harman D (1984) Free radical theory of aging: The “free radical” diseases. Age 7:111–131.

    Article  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Kotler M, Rodriquez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24:83–89.

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Singh NP (1997) Melatonin and N-tert-butyl-a-phenylnitrone block 60 Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 22:152–162.

    Article  PubMed  CAS  Google Scholar 

  • Lesko SA, Lorentzen RJ, Ts’o POP (1980) Role of superoxide in DNA strand scission. Biochemistry 19:3027–3028.

    Article  Google Scholar 

  • Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FK (1997) Melatonin decreases production of hydroxyl radical (luring cerebral ischemia-reperfusion. Acta Pharmacol Sinica 18:394–396.

    CAS  Google Scholar 

  • Lindahl T (1977) DNA repair enzymes acting on spontaneous lesions in DNA. In: Nichols WW, Murphy DC (eds), DNA Repair Processes, Symposia Specialists, Miami, pp 225–240.

    Google Scholar 

  • Lindahl T (1982) DNA-repair enzymes. Ann Rev Biochem 51:61–87.

    Article  PubMed  CAS  Google Scholar 

  • Longoni B, Salgo MG, Pryor WA, Marchiafava PL (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 62:853–859.

    Article  PubMed  CAS  Google Scholar 

  • Malins DC, Polissar NL, Gunselman SJ (1996) Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc Natl Acad Sci USA 93: 2557–2563.

    Article  PubMed  CAS  Google Scholar 

  • Marnett L, Hurd HK, Hollenstein MK, Levin DE, Esterbauer H, Ames BN (1985) Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 148:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Marshall KA, Reiter RJ, Poeggeler B, Aruoma B, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radical Biol Med 21:307–315.

    Article  CAS  Google Scholar 

  • Martins EM, Meneghini R (1990) DNA damage and lethal effects of hydrogen peroxide and menodione in Chinese hamster cells: distinct mechanisms are involved. Free Radical Biol Med 8:433–440.

    Article  CAS  Google Scholar 

  • Massie HR, Samis HV, Baird MB (1972) The kinetics of degradation of DNA and RNA by H202. Biochem Biophys Acta 272:539–548.

    PubMed  CAS  Google Scholar 

  • Matuszek Z, Reszka KJ, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radical Biol Med 23:367–372.

    Article  Google Scholar 

  • Melchiorri D, Reiter RJ, Attia AM, Hara M, Burgos A, Nistico G (1995) Potent protective effect of melatonin on in vivo paraquat-induced oxidative damage in rats. Life Sci 56:83–89.

    Article  PubMed  CAS  Google Scholar 

  • Melchiorri D, Ortiz GG, Reiter RJ, Sewerynek E, Daniels WMU, Pablos MI, Nistico G (1998) Melatonin reduces paraquat-induced genotoxicity in mice. Toxicol Lett 95:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Mello-Filho AC, Meneghini R (1984) In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta 781:56–83.

    PubMed  CAS  Google Scholar 

  • Meneghini R, Hoffman ME (1980) The damaging action of hydrogen peroxide on DNA of human fibroblast is mediated by a non-dialyzable compound. Biochim Biophys Acta 608:167–173.

    PubMed  CAS  Google Scholar 

  • Menendez-Pelaez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15:59–69.

    Article  PubMed  CAS  Google Scholar 

  • Montilla P, Tuney I, Munoz MC, Lopez A, Soria JV (1997) Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration. Nephron 76:345–350.

    Article  PubMed  CAS  Google Scholar 

  • Ochi T, Cerutti P (1987) Clastogenic action of hydroperoxy—5,8, ll,13—icosatetraenoic acids on the mouse embryo fibroblasts C3H/I0T1/2. Proc Natl Acad Sci USA 84:990–994.

    Article  PubMed  CAS  Google Scholar 

  • Ochi T, Cerutti P (1989) Differential effects of glutathione depletion and metallothionein induction on the induction of DNA single-strand breaks and cytotoxicity by tert-butyl hydroperoxide in cultured mammalian cells. Chemico-Biol Interact 72:335–345.

    Article  CAS  Google Scholar 

  • Okada S, Nakamura N, Sasaki K (1997) Radioprotection of intracellular genetic material. In: Nygaard OF, Simic MC (eds) Radioprotectors and Anticarcinogens, Academic Press, New York, pp 339–346.

    Google Scholar 

  • Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden LR, Acuna-Castroviejo D, Menendez-Pelaez A (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19:111–115.

    Article  PubMed  CAS  Google Scholar 

  • Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, Sewerynek E (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32:69–75.

    Article  PubMed  CAS  Google Scholar 

  • Panzer A, Viljoen M (1997) The validity of melatonin as an oncostatic agent. J Pineal Res 22: 184–202.

    Article  PubMed  CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: A peroxyl scavenger more potent than vitamin E. Life Sci 55:271–276.

    Article  Google Scholar 

  • Pieri G, Moroni M, Marra M, Marcheselli F, Recchioni R (1995) Melatonin as an efficient antioxidant. Arch Gerontol Geriatr 20:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Pierrefiche G, Laborit H (1995) Oxygen radicals, melatonin and aging. Exp Gerontol 30:213–227.

    Article  PubMed  CAS  Google Scholar 

  • Portier CJ, Hedges JC, Hoel DG (1986) Age-specific models of mortality and tumor onset for historical control animals in the National Toxicology Program’s carcinogenicity experiments. Cancer Res 46:4372–4378.

    PubMed  CAS  Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1994) Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:PL455–460

    Article  Google Scholar 

  • Princ FG, Juknat AA, Maxit AG, Cardalda C, Battle A (1997) Melatonin’s antioxidant protection against S-aminolevulinic acid-induced oxidative damage in rat cerebellum. J Pineal Res 23: 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Reddy MV, Randerrath K (1986) Nuclease PI-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7:1543–1551.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev 12:151–180.

    Article  CAS  Google Scholar 

  • Reiter RJ (1992) The aging pineal gland and its physiological consequences. BioEssays 14:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533.

    PubMed  CAS  Google Scholar 

  • Reiter RJ (1996) Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radicals. Eur J Endocrinol 134:412–430.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1997 a) Antioxidant actions of melatonin. Adv Pharmacol 38:103-117

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1997 a) Antioxidant actions of melatonin. Adv Pharmacol 38:103–117 Reiter RJ (1997b) Aging and oxygen toxicity: relation to changes in melatonin. Age 20:201–213.

    Article  CAS  Google Scholar 

  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden LR, Chuang J, Ortiz GG, Acuna- Castroviejo D (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Pablos MI, Agapito MT, Guerrero JM (1996) Melatonin in the context of the free radical theory of aging. Ann NY Acad Sci 786:362–378.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Carneiro RC, Oh CS (1997 a) Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res 29:363–372.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tang L, Garcia J J, Munoz-Hoyos A (1997 b) Pharmacological actions of melatonin in free radical pathophysiology. Life Sci 60:2255–2271.

    Article  PubMed  CAS  Google Scholar 

  • Richter C (1987) Biophysical consequences of lipid peroxidation in membranes. Chem Physics Lipids 44:175–179.

    Article  CAS  Google Scholar 

  • Rossi MA, Fidole F, Garramone A, Esterbauer H, Dianzani MV (1990) Effect of 4-hydroxyalkenals on hepatic phosphatidyl-inositol-4,5—biphosphate phospholipase C. Biochem Parmacol 39: 1715–1719.

    Article  CAS  Google Scholar 

  • Saul RL, Ames BN (1986) Background levels of DNA damage in the population. In: Simic M, Grossman L, Upton A (eds) Mechanisms of DNA Damage and Repair: Implications for Carcinogensis and Risk Assessment. Plenum, New York, pp 529–536.

    Google Scholar 

  • Saul RL, Gee P, Ames BN (1987) Free radicals, DNA damage, and aging. In: Warner HR, Butler RN, Sprott RL, Schnedier EL (eds) Modern Biological Theories of Aging. Raven, New York, pp 113–129.

    Google Scholar 

  • Scaiano JC (1995) Exploratory laser flash photolysis study of free radical reactions and magnetic field effects in melatonin chemistry. J Pineal Res 19:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Sewerynek E, Melchiorri D, Chen L, Reiter RJ (1995) Melatonin reduces both basal and bacterial lipopolysaccharide-induced lipid peroxidation in vitro. Free Radical Biol Med 19:903–909.

    Article  CAS  Google Scholar 

  • Sewerynek E, Ortiz GG, Reiter RJ, Pablos MI, Melchiorri D, Daniels WMU (1996) Lipopolysaccharide-induced DNA damage is greatly reduced in rats treated with the pineal hormone melatonin. Mol Cell Endocrinol 117:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Shacter S, Beecham EJ, Covey JM, Kohn KW, Potter M (1988) Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9:2297–2304.

    Article  PubMed  CAS  Google Scholar 

  • Shacter E, Lopez RL, Beecham EJ, Janz S (1990) DNA damage induced by phorbol ester-stimulated neutrophils is augmented by extracellular factors. J Biol Chem 265:6693–6699.

    PubMed  CAS  Google Scholar 

  • Shapiro R (1981) Damage to DNA caused by hydrolysis. In: Seeberg E, Kleppe K (eds) Chromosome Damage and Repair. Plenum, New York, pp 3–18.

    Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434.

    Article  PubMed  CAS  Google Scholar 

  • Stasica P, Ulanski P, Rosiak JM (1998) Melatonin as a hydroxyl radical scavenger. J Pineal Res 25: 65–66.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Costa M, Nakagawa T, Hidaka T, Ogura R (1988) Stimulation of polyadenosine di-phosphoribose synthesis by DNA lesions induced by sodium chromate in Chinese hamster V-79 cells. Cancer Res 48:1100–1104.

    PubMed  CAS  Google Scholar 

  • Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M (1997) Potent protective effect of melatonin on chromium (VI)-induced DNA strand breaks, cytotoxicity and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384.

    Article  PubMed  CAS  Google Scholar 

  • Tamir S, Burney S, Tannenbaum SR (1996) DNA damage by nitric oxide. Chem Res Toxicol 9: 821–827.

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993 a) Melatonin: A potent endogenous hydroxyl radical scavenger. Endocrine J 1:57–60.

    Google Scholar 

  • Tan DX, Poeggeler B, Reiter RJ, Chen LD, Manchester LC, Barlow-Walden LR (1993 b) The pineal hormone melatonin inhibits DNA adduct formation induced by the chemical carcinogen safrole. Cancer Lett 70:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Reiter RJ, Chen LD, Poeggeler B, Manchester LC, Barlow-Walden LR (1994) Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by safrole. Carcinogenesis 15:215–218.

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Reiter RJ, Li ZR, Ortiz GG, Yu BP, Garcia J J (1998) Melatonin reduces the increase in 8-hydroxy-deoxyguanosine levels in the brain and liver of kainic acid-treated rats. Molec Cell Biochem 178:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni S, Sagripanti JC (1996) Association between 8-hydroxy-2’-deoxyguanosine formation and DNA strand breaks mediated by copper and iron. Free Radical Biol Med 20:859–864.

    Article  CAS  Google Scholar 

  • Trush MT, Kensler WK (1991) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radical Biol Med 10:201–209.

    Article  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Meltz ML (1995 a) Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat Res 346:23–31.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Sewerynek E, Poeggeler B, Leal BZ, Meltz ML (1995b) Marked reduction of radiation-induced micronuclei in human blood lymphocytes pretreated with melatonin. Radiat Res 143:102–106.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML (1996) Melatonin and radioprotection from genetic damage: in vivo/in vitro studies in human volunteers. Mutat Res 371:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML (1998 a) Melatonin reduces gamma radiation-induced primary DNA damage in human blood lymphocytes. Mutat Res 397:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Meltz ML, Herman TS (1998b) Melatonin: possible mechanisms involved in its “radioprotective” effects. Mutat Res 404:187–189.

    Article  PubMed  CAS  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res 35:96–135.

    Google Scholar 

  • Williams GC, Neese RM (1991) The dawn of Darwinian medicine. Quart Rev Biol 66:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H (1994) Tamoxifen: new membrane-mediated mechanisms of action and therapeutic advances. Trends Pharmacol Sci 15:83–89.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1994) Tamoxifen and related compounds protect against lipid peroxidation in isolated nuclei: relevance to the potential anticarcinogenic benefits of breast cancer prevention and therapy with tamoxifen. Free Radical Biol Med 17:485–488.

    Article  CAS  Google Scholar 

  • Yamamoto HA, Tang HW (1996) Melatonin attenuates L-cysteine—induced seizures and lipid peroxidation in the brain of mice. J Pineal Res 21:108–113.

    Article  PubMed  CAS  Google Scholar 

  • Yamashina K, Miller BE, Heppner GH (1986) Macrophage-mediated induction of drug resistant variants in mouse mammary tumor cell line. Cancer Res 46:2396–2401.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reiter, R.J. (2001). Reactive Oxygen Species, DNA Damage, and Carcinogenesis: Intervention with Melatonin. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics