Skip to main content

Neuroimmunomodulation Via the Autonomic Nervous System

  • Chapter
The Pineal Gland and Cancer

Abstract

The existence of an intense dialogue between the brain and the immune system is well-established, and the role of the autonomic nervous system as the translator for both systems is becoming increasingly evident. The development and functions of lymphocytes are influenced by transmitters of the autonomic nervous system. On the other hand, the “feedback” of the activated immune system to the brain is also modulated by autonomic mechanisms. Finally, besides expressing adrenergic and cholinergic receptors, lymphocytes were recently shown to synthesize and release catecholamines and acetylcholine, pointing to a possible role of these mediators in the intrinsic regulation of the immune system. In this review, we will discuss data to these points as obtained in experimental studies in the rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonica A, Magni F, Mearini L, Paolocci N (1994) Vagal control of lymphocyte decrease from rat thymus. J Autonom Nerv Syst 48: 187–197

    Article  CAS  Google Scholar 

  • Badamchian M, Damavandy H, Radojcic T, Bulloch K (1992) Choline O-acetyltransferase (ChAT) and muscarinic receptor in the Balb/C mouse thymus. Abstract, Satellite meeting of the 8th International Congress of Immunology “Advances in Psychoneuroimmunology”, Budapest

    Google Scholar 

  • Berczi I, Baragar FD, Chalmers IM, Keystone EC, Nagy E, Warrington RJ(1993) Hormones in self tolerance and autoimmunity: a role in pathogensis of rheumatoid arthritis? Autoimmunity 16: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky HO, Del Rey A, Sorkin E, Da Prada M, Keller HH (1979) Immunoregulation mediated by the sympathetic nervous system. Cell Immunol 48: 346–355

    Article  PubMed  CAS  Google Scholar 

  • Blalock JE (1994) The immune system - our sixth sense. The Immunologist 2: 8–15

    CAS  Google Scholar 

  • Bulloch K (1988) A comparative study of the autonomous nervous system innervation of the thymus in the mouse and chicken. Int J Neurosci 40: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Brinton RE, Galaburda A, MC Ewen B, Schneider D (1987) The neuro-immune-endocrine connection. Raven Press, New York

    Google Scholar 

  • Felsner P, Hofer D, Rinner I, Mangge H, Gruber M, Korsatko W, Schauenstein K (1992) Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of rat peripheral blood T-lymphocytes via a-meditated mechanisms. J Neuroimmunol 37: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Felsner P, Hofer D, Rinner I, Porta S, Korsatko W, Schauenstein K (1995) Adrenergic suppression of peripheral blood T cell reactivity in the rat is due to activation of peripheral FF2-receptors. J Neuroimmunol 57: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Felten SY, Felten DL (1991) Innervation of lymphoid tissue. In: Ader R, Feiten DL, Cohen N (eds) Psychoneuroimmunology, 2nd edn. Academic Press, New York, pp 27–69

    Google Scholar 

  • Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackermann KD, Madden KS, Olschowski JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev 100: 225–260

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Lopez A, Pazos A (1994) Identification of alpha2-adrenoceptors in rat lymph nodes and spleen: an autoradiographic study. Eur J Pharmacol 252: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Fonnum FA (1975) Rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–s409

    Article  PubMed  CAS  Google Scholar 

  • Genaro AM, Cremaschi GA, Borda ES (1993) Muscarinic cholinergic receptors on murine lymphocyte subpopulations. Selective interactions with second messenger response system upon pharmacological stimulation. Immunopharmacology 26: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Haas HS, Schauenstein K (1997) Neuroimmunomodulation via limbic structures - the neuroanatomy of psychoimmunology. Progr Neurobiol 52: 195–222

    Article  Google Scholar 

  • Iliano G, Tell GPE, Segal MI, Cuatrecasas P (1973) Guanosine 3″5’-cyclic monophophate and the action of insulin and acetylcholine. Proc Natl Acad Sci USA 70: 2443–2447

    Article  Google Scholar 

  • Josefsson E, aBergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88: 140–146

    Article  PubMed  CAS  Google Scholar 

  • Khan MM, Sansoni P, Silverman ED, Engleman EG, Melmon KL (1986) Beta-adrenergic receptors on human suppressor, helper and cytolytic lymphocytes. Biochem Pharm 7: 1137–1142

    Article  Google Scholar 

  • Korsatko W. Porta S, Sadjak A, Supanz S (1982) Implantation von Adrenalin-Retardtabletten zur Langzeituntersuchung in Ratten. Pharmazie 37: 565–568

    Google Scholar 

  • Liebmann P, Hofer D, Felsner P, Wölfler A, Schauenstein K (1996) Beta-blockade enhances adrenergic immunosuppression in rats via inhibition of melatonin release. J Neuroimmunol 67: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Liebmann PM, Wölfler A, Schauenstein K (2000) Melatonin and immune functions. This volume

    Google Scholar 

  • Maslinski W (1989) Cholinergic receptors on lymphocytes. Brain Behav Immun 3: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Mason D, MacPhee I, Antoni F (1990) The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 70: 1–5

    PubMed  CAS  Google Scholar 

  • Nance DM, Hopkins DA, Bieger D (1987) Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun 1: 134–147

    Article  PubMed  CAS  Google Scholar 

  • Rinner I, Schauenstein K (1991) The parasympathetic nervous system takes part in the immuno-neuroendocrine dialogue. J Neuroimmunol 34: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Rinner I, Schauenstein K (1993) Detection of choline-acetytransferase activity in lymphocytes. J Neurosci Res 35: 188–191

    Article  PubMed  CAS  Google Scholar 

  • Rinner I, Kukulansky T, Felsner P, Skreiner E, Globerson A, Kasai M, Hirokawa K, Korsatko W, Schauenstein K (1994) Cholinergic stimulation modulates apoptosis and differentiation of murine thymocytes via a nicotinic effect on thymic epithelium. Biochem Biophys Res Comm 203: 1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Rinner I, Kawashima K, Schauenstein K (1998) Rat lymphocytes produce and secrete acetylcholine in dependence of differentation and activation. J Neuroimmunol 81: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Rinner I, Globerson A, Kawashima K, Korsatko W, Schauenstein K (1999) A possible role for acetylcholine in the dialogue between thymocytes and thymic stroma. Neuroimmunomodulation 6: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Tria MA, Baschieri S, Doria G, Frasca D (1989) Cholinergic agonists selectively induce proliferative responses in the mature subpopulation of murine thymocytes. J Neurosci Res 24: 369–373

    Article  PubMed  CAS  Google Scholar 

  • Schauenstein K, Faessler R, Dietrich H, Schwarz S, Kroemer G, Wick G (1987) Disturbed immune- endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis. J Immunol 139: 1830–1833

    PubMed  CAS  Google Scholar 

  • Schauenstein K, Rinner I, Felsner P, Hofer D, Mangge H, Skreiner E, Liebmann P, Globerson A (1994) The role of the adrenergic/cholinergic balance in the immune-neuroendocrine circuit. In: Berci I, Szeleny J (eds) Advances in Psychoneuroimmunology. Plenum Press, New York, pp 349–356

    Google Scholar 

  • Schauenstein K, Rinner I, Felsner P, Hofer D, Mangge H, Skreiner E, Liebmann P, Globerson A (1994) The role of the adrenergic/cholinergic balance in the immune-neuroendocrine circuit. In: Berci I, Szeleny J (eds) Advances in Psychoneuroimmunology. Plenum Press, New York, pp 349–356

    Google Scholar 

  • Singh U, Fatani J (1988) Thymic lymphopoesis and cholinergic innervation. Thymus 11: 3–13

    PubMed  CAS  Google Scholar 

  • Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, Wilder RL (1989) Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA 86: 4771–4775

    Article  PubMed  CAS  Google Scholar 

  • Strom TB, Sytkowski AT, Carpenter CB, Merill JB (1974) Cholinergic augmentation of lymphocyte mediated cytotoxicity. A study of the cholinergic receptor of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 71: 1330–1333

    Article  PubMed  CAS  Google Scholar 

  • Szelenyi J, Palldi-Haris P, Hollan S (1987) Changes in the cholinergic system due to mitogenic stimulation. Immunol Lett 16: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Titinchi S, Clark B (1984) Alpha 2-adrenoceptors in human lymphocytes: Direct characterization by (3H) yohimbine binding. Biochem Biophys Res Commun 121:1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schauenstein, K. et al. (2001). Neuroimmunomodulation Via the Autonomic Nervous System. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics