Skip to main content

A Survey of the Evidence That Melatonin and Unidentified Pineal Substances Affect Neoplastic Growth

  • Chapter
The Pineal Gland and Cancer
  • 208 Accesses

Abstract

A survey has been made of the evidence that the pineal hormone melatonin and unidentified substances affect neoplastic growth. Although a handful of scientists provided early contributions in this area, the potential role of the pineal gland in the development and growth of tumors was not acknowledged until the 1970s with the pioneering work of Vera Lapin. She and her associates concluded from experimental and clinical data that the pineal gland was involved in the development and growth of tumors. Full recognition of this potential relationship was evident with the first pineal-cancer meeting that took place in Vienna in 1977. Since that time, the majority of experimental work has focused on the relationship between the pineal indolamine melatonin and tumor growth. According to several reviews of the literature written in the interim, melatonin administration has proven to be an effective modulator of tumor growth in a variety of animal models and in human malignancy. Current work focuses on pineal effects in relation to malignant growth, stress, and the immune system. Additionally, suppressive effects of melatonin on tumor cell growth have been demonstrated in vitro. A potentially significant advancement was made by Georges Maestroni and coworkers in their suggestion that the pineal gland participates in regulating immunity through circadian melatonin production. There is growing related evidence, derived in large portion from the work of Christian and Hella Bartsch and their colleagues, that the depression of rhythmic melatonin secretion favors malignant growth by a generalized loss of synchronization of endocrine and immune functions. Although most work has focused on the relationship between melatonin and cancer, unidentified pineal compounds may play a yet undefined role in relation to neoplastic growth. Compounds extracted and purified from rat, ovine, and bovine pineal glands have been shown to inhibit cancer cell growth in a variety of in vitro systems. We have carried out related experiments that demonstrate the presence of a substance in extracts of bovine pineal glands which inhibits the growth of MCF-7 Human breast cancer cells. Sim Harto the results of other studies, the inhibitory substance appears to be a small peptide that can be purified by aqueous ethanol extraction, molecular sieve ultrafiltration and chromatography, and high-performance liquid chromatography. Determination of the chemical structure(s) of these unidentified antigrowth pineal factors could provide synthetic analogs for further testing in animal models of cancer. In conclusion, the possible relationship between the pineal gland and tumor growth suggested more than 60 years ago has become widely accepted. A significant regulatory role for the pineal hormone melatonin is suggested by its measurements in both cancer patients and experimental animal models. Although attention has focused primarily on the relationship between melatonin and malignant growth, it is also clear that other, unidentified compounds that inhibit cancer cell growth can be extracted and purified from pineal glands, but their chemical structures and modes of action are yet to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anisimov VN (1988) Pineal gland, aging and carcinogenesis. In: Gupta D, Attanasio A, Reiter RJ (eds) The Pineal Gland and Cancer. Brain Research Promotion, London, pp 107–118

    Google Scholar 

  • Ariëns Kappers J (1981) Evolution of pineal concepts. In: Oksche A, Pévet P (eds) The Pineal Organ. Photobiology, Biochemistry and Endocrinology. Elsevier/Amsterdam, pp 3–23

    Google Scholar 

  • Ariëns Kappers J (1983) Comparative gross and fine morphology of the mammalian pineal gland. In: Axelrod J, Fraschini F, Velo GP (eds) The Pineal Gland and its Endocrine Role. Plenum, New York, pp 37–59

    Google Scholar 

  • Bartsch H, Bartsch C (1981) Effect of melatonin on experimental tumors under different photo-periods and times of administration. J Neural Transm 52: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H (1984) The link between the pineal gland and cancer: An interaction involving chronobiological mechanisms. In: Halberg F, Reale L, Tarquini B (eds) Chronobiological approach to social medicine. Instituto Italiano di Medicina Sociale, Rome, pp 105–126

    Google Scholar 

  • Bartsch C, Bartsch H ( 1988 a) Melatonin in human cancer patients. In: Gupta D, Attanasio A, Reiter RJ (eds) The pineal gland and cancer. Brain Research Promotion, London, pp 361–368

    Google Scholar 

  • Bartsch H, Bartsch C (1988b) Unidentified pineal substances with antitumor activity. In: Gupta D, Attanasio A, Reiter RJ (eds) The pineal gland and cancer. Brain Research Promotion, London, pp 369–376

    Google Scholar 

  • Bartsch H, Bartsch C (1993) Antitumor activity in pineal glands and in urine display similar circ- annual rhythmicity. In: Gutenbrunner C, Hildebrandt G, Moog R (eds) Chronobiology and Chronomedicine. Peter Lang GmbH, Frankfurt am Main, pp 390–395

    Google Scholar 

  • Bartsch C, Bartsch H (1997) Pineal gland and cancer: an old concept with potential for the future. Neuroendocrinology Lett 18: 63–72

    Google Scholar 

  • Bartsch C, Bartsch H, Jain AK, Laumas KB, Wetterberg L (1981) Urinary melatonin levels in human breast cancer patients. J Neural Transm 52: 281–294

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Flüchter S-H, Harzmann A, Attanasio A, Bichler K-H, Gupta D (1983) Circadian rhythms of serum melatonin, prolactin and growth hormone in patients with benign and malignant tumors of the prostate and in non-tumor controls. Neuroendocrinology Lett 5: 377–386

    Google Scholar 

  • Bartsch H, Bartsch C, Flehmig B (1986) Differential effect of melatonin on slow and fast growing passages of a human melanoma cell line. Neuroendocrinology Lett 8: 289–293

    CAS  Google Scholar 

  • Bartsch H, Bartsch C, Noteborn HPJM, Flehmig B, Ebels I, Salemink CA (1987 a) Growth-inhibiting effect of crude pineal extracts on human melanoma cells in vitro is different from that of known synthetic pineal substances. J Neural Transm 69: 299–311

    Google Scholar 

  • Bartsch H, Bartsch C, Flehmig B (1987b) Pineal anti-tumor activity (PATA) of rats under different physiological conditions. In: Trentini GP, De Gaetani C, Pévet P (eds) Fundamentals and Clinics in Pineal Research. Raven Press, New York, pp 381–384

    Google Scholar 

  • Bartsch C, Bartsch H, Fuchs U,Lippert TH, Bellmann O, Gupta D (1989) Stage-dependent depression of melatonin in patients with primary breast cancer. Cancer 64: 426–433

    CAS  Google Scholar 

  • Bartsch C, Bartsch H, Lippert TH, Gupta D (1990a) Effect of the mammary carcinogen 7,12-di- methylbenz[a] anthracene on pineal melatonin biosynthesis, secretion and peripheral metabolism. Neuroendocrinology 52: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Gupta D (1990b) Pineal melatonin synthesis and secretion during induction and growth of mammary cancer in rats. In: Gupta D, Wollmann HA, Ranke MB (eds) Neuroendocrinology: New Frontiers. Brain Research Promotion, Tübingen, pp 326–332

    Google Scholar 

  • Bartsch H, Bartsch C, Gupta D (1990c) Seasonal variations of endogenous defence mechanisms against cancer. In: Gupta D, Wollmann HA, Ranke MB (eds) Neuroendocrinology: New Frontiers. Brain Research Promotion, Tübingen, pp 333–339

    Google Scholar 

  • Bartsch H, Bartsch C, Gupta D (1990d) Tumor inhibiting activity in the rat pineal gland displays a circannual rhythm. J Pineal Res 9: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Bellmann O, Lippert TH (1991) Depression of serum melatonin in patients with primary breast cancer is not due to an increased peripheral metabolism. Cancer 67: 1681–1684

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Schmidt A, Ilg S, Bichler K-H, Fluchter S-H (1992 a) Melatonin and 6-sulfat- oxymelatonin circadian rhythms in serum and urine of primary prostate cancer patients: evidence for reduced pineal activity and relevance of urinary determination. Clin Chim Acta 209: 153–167

    Google Scholar 

  • Bartsch H, Bartsch C, Simon WE, Flehmig B, Ebels I, Lippert TH (1992 b) Antitumor activity of the pineal gland. Effect of unidentified substances versus effect of melatonin. Oncology 49: 27–30

    Google Scholar 

  • Bartsch C, Bartsch H, Lippert TH (1992 c) The pineal gland and cancer: facts, hypotheses and per-spectives. The Cancer Journal 5: 194–199

    Google Scholar 

  • Bartsch H, Bartsch C, Mecke D, Lippert TH (1993) The relationship between the pineal gland and cancer: seasonal aspects. In: Wetterberg L (ed) Light and biological rhythms in man. Pergamon Press Ltd., London, pp 337–347

    Google Scholar 

  • Bartsch C, Bartsch H, Flüchter S-H, Mecke D, Lippert TH (1994) Diminished pineal function co¬incides with disturbed circadian endocrine rhythmicity in untreated primary cancer patients. Ann N Y Acad Sei 719: 502–525

    Article  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Karenovics A, Franz H, Peiker G, Mecke D (1997 a) Nocturnal urinary 6-sulfat- oxymelatonin excretion is decreased in primary breast cancer patients compared to age-matched controls and shows negative correlation with tumor size. J Pineal Res 23: 53–58

    Google Scholar 

  • Bartsch C, Kvetnoy I, Kvetnaia T, Bartsch H, Molotkov A, Franz H, Raikhlin N, Mecke D (1997b) Nocturnal urinary 6-sulfatoxymelatonin and proliferating cell nuclear antigen immunopositive tumor cells show strong positive correlations in patients with gastrointestinal and lung cancer. J Pineal Res 23: 90–96

    Article  PubMed  CAS  Google Scholar 

  • Benson B (1977) Current status of pineal peptides. Neuroendocrinology 24: 241–258

    Article  PubMed  CAS  Google Scholar 

  • Benson B (1997) Melatonin retards the growth of diethylstilbestrol-induced renal tumors in male Syrian hamsters. Cancer Biother Radiopharm 12: 415

    Google Scholar 

  • Benson B (1999 a) Pineal gland neuropeptides. In Watson RR (ed) Melatonin in Health Promotion. CRC Press, Boca Raton, 137–149 Benson B (1999b) Pineal gland-derived antigonadotropic decapeptide. In Watson RR (ed) Melatonin in Health Promotion. CRC Press, Boca Raton, 151–160

    Google Scholar 

  • Benson B, Ebels I (1978) Pineal peptides. J Neural Transm Suppl 13: 157–173

    PubMed  CAS  Google Scholar 

  • Benson B, Ebels I (1981) Other pineal peptides and related substances - physiological implications for reproductive biology. In: Reiter RJ (ed) The Pineal Gland. Reproductive Effects Vol II, pp 165–187

    Google Scholar 

  • Benson B, Ebels I (1994) Structure of a pineal-derived antigonadotropic decapeptide. Life Sei 54:PL437–443

    Google Scholar 

  • Benson B, Machen N (1994) Infusion of a pineal gland-derived antigonadotropic decapeptide into the lateral ventricle depresses prolactin levels in male rats. Life Sei 55: 363–368

    Article  Google Scholar 

  • Benson B, Matthews MJ, Rodin AE (1972) Studies on a non-melatonin pineal antigonadotropin. Acta Endocrinol 69: 257–266

    PubMed  CAS  Google Scholar 

  • Benson B, Ebels I, Hruby VJ (1990) Isolation and structure elucidation of bovine arginine vasopressin: arginine vasotocin not identified. Int J Pep Prot Res 36: 109–121

    Article  CAS  Google Scholar 

  • Benson B, Machen N, Dunn AM, Wise ME (1996) Chronic infusion of a pineal gland-derived antigonadotropic decapeptide alters pulsatile secretion of LH in rats. Life Sei 58: 1083–1090

    Article  CAS  Google Scholar 

  • Bergmann W, Engel P (1950) Ãœber den Einfluss von Zirbelextrakten auf Tumoren bei weissen Mäusen und bei Menschen. Wien Klin Wschr 62: 79–82

    Google Scholar 

  • Bindoni M, Jutisz M, Ribot G (1976) Characterisation and partial purification of a substance in the pineal gland which inhibits cell multiplication in vitro. Biochim Biophys Acta 437: 577–588

    PubMed  CAS  Google Scholar 

  • Blask DE (1984) The pineal gland: an oncostatic gland? In: Reiter RJ (ed) The Pineal Gland, Raven Press, New York, pp 253–284

    Google Scholar 

  • Blask DE, Leadem CA (1987) Neuroendocrine aspects of neoplastic growth: a review. Neuroendocrinol Lett 9: 63–73

    CAS  Google Scholar 

  • Cos S, Mediavilla MD, Fernandez R, Güezmes A, Sanchez-Barcelo EJ (1997) Melatonin and MCF-7 human breast cancer cells: a short review. Cancer Biother Radiopharm 12: 420

    Google Scholar 

  • Dilman VM, Anisimov VH, Ostroumova MN, Morosov VG, Khavinson VKh, Azanova MA (1979) Study of the antitumor effect of polypeptide pineal extract. Oncology 36: 274–280

    Article  PubMed  CAS  Google Scholar 

  • Dwyer VG, Benson B, Kwan KH, Humphreys RC, Ko WJ, Lin NH, Sammons DW (1988) A computer- enhanced comparative study of brain region polypeptides and proteins by two dimensional gel electrophoresis. J Pharmac and Biomed Anal 6: 793–779

    Article  CAS  Google Scholar 

  • Ebels I (1980) A survey of the location, isolation and identification of indoles, pteridines and some unknown active substances in sheep pineals. The possible significance of pteridines for the neuroendocrine control of neoplastic growth. J Neural Transm 49: 87–105

    Article  PubMed  CAS  Google Scholar 

  • Ebels I, Benson B (1978) A survey of the evidence that unidentified pineal substances affect the reproductive system in mammals. Progr Reprod Biology 4: 51–89

    CAS  Google Scholar 

  • Ebels I, Citharel A, Moszkowska A (1975) Separation of pineal extracts by gelfiltration. III. Sheep pineal factors acting either on the hypothalamus or on the anterior hypophysis of mice and rats in in vitro experiments. J Neural Transm 36: 281–302

    Article  PubMed  CAS  Google Scholar 

  • Ebels I, Noteborn HPJM, Bartsch H, Bartsch C (1988) Effects of low molecular weight pineal compounds on neoplastic growth. In: Gupta D, Attanasio A, Reiter RJ (eds) The pineal gland and cancer. Brain Research Promotion, London/Tübingen, pp 261–272

    Google Scholar 

  • Engel P (1934) Ãœber den Einfluss von Hypophysenvorderlappen-Hormonen und Epiphysen-Hormonen auf das Wachstum von Impftumoren. Z Krebsforschung 41: 281–291

    Article  Google Scholar 

  • Engel P (1935) Wachstumsbeeinflussende Hormone und Tumorwachstum. Z Krebsforschung 41: 488–496

    Article  CAS  Google Scholar 

  • Engel P, Bergmann W (1952) Die Physiologische Funktion der Zirbeldrüse und ihre therapeutische Anwendung. Z Vitamin Hormon Fermentforschung IV (6): 564–594

    Google Scholar 

  • Feuer GM, Kerenyi NA (1989) Role of the pineal gland in the development of malignant melanoma. Neurochem Int 14: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Hajdu SJ, Porro RS, Liebermann PH, Foote Jr FW (1972) Degeneration of the pineal gland of patients with cancer. Cancer 29: 706–709

    Article  PubMed  CAS  Google Scholar 

  • Hill SM, Blask DE (1988) Effects of the pineal gland hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 48: 6121–6126

    PubMed  CAS  Google Scholar 

  • Hirata F, Hayaishi O (1974) In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 249: 1311–1313

    PubMed  CAS  Google Scholar 

  • Hofstätter R (1950) Beitrag zur therapeutischen Verwendung von Zirbelextrakten. Wien Klin Wschr 62: 1–4

    Google Scholar 

  • Kelly RW, Amato F, Seamark RF (1984) N-acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem Biophys Res Commun 121: 372–379

    Article  PubMed  CAS  Google Scholar 

  • Kitay JI, Altschule MD (1954) The Pineal Gland, a Review of the Physiological Literature, Harvard University Press, Cambridge

    Google Scholar 

  • Klotz DM, Castles CG, Fuqua SAW, Spriggs LL, Hill SM (1995) Differential expression of wild-type and variant ER mRNAs by stocks of MCF-7 breast cancer cells may account for differences in estrogen-responsiveness. Biochem Biophys Res Comm 210: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Lapin V (1974) Influence of simultaneous thymectomy and pinealectomy on the growth and formation of metastases of Yoshida sarcoma in rats. Exp Pathol Jena 9: 108–112

    PubMed  CAS  Google Scholar 

  • Lapin V (1976) Pineal gland and malignancy. Österr Z Onkol 3: 51–60

    PubMed  CAS  Google Scholar 

  • Lapin V, Ebels I (1976) Effects of some low molecular weight sheep pineal fractions and melatonin on different tumors in rats and mice. Oncology 33: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Lapin V, Ebels I (1981) The role of the pineal gland in neuroendocrine control mechanisms of neo¬plastic growth. J Neural Transm 50: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Lapin V, Frowein A (1981) Effects of growing tumors on pineal melatonin level in rats. J Neural Transm 52: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Leadem CA (1986) Pineal-mediated inhibition of estrogen-induced pituitary tumor growth in Fisher 344 rats. Abstracts 68th Ann Mtg Endoer Soc, p 46

    Google Scholar 

  • Leadem CA, Burns DM (1987) Pineal-induced inhibition of prolactinoma growth in F344 rats: effects of blinding and melatonin treatment. Abstracts Ann Mtg Endocr Soc, p 344

    Google Scholar 

  • Lee, H-J (1998) Regulation of hypothalamic GnRH secretion by a novel decapeptide (antigonadotropic decapeptide). Master’s thesis, University of Arizona

    Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH (1958) Isolation of melatonin, the pineal factor that lightens melanocytes. J Am Chem Soc 80: 2587

    Article  CAS  Google Scholar 

  • Liburdy RP (1977) In vitro effects of ELF magnetic fields on melatonin function in human breast cancer cells. Cancer Biother Radiopharm 12: 426

    Google Scholar 

  • Logan JL, Benson B (1990) Light deprivation retards the growth of the diethylstilbestrol-induced renal tumor in hamsters. Growth Dev Aging 54: 30–43

    Google Scholar 

  • Logan JL, Leadem CA, Benson B (1988) Blinding retards the growth and metastatic spread of the DES-induced renal tumor in male Syrian hamsters. In Gupta D, Attanasio A, Reiter RJ (eds) The Pineal Gland and Cancer. Brain Research Promotion, London/Tübingen, pp 307–319

    Google Scholar 

  • Maestroni GJM (1993) Mini-review. The immunoneuroendocrine role of melatonin. J Pineal Res 14: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJM (1997) Melatonin affects immune-hematopoietic system via novel T-helper cells opioid cytokines acting on kappa-opioid receptor in bone marrow stroma. Cancer Biother Radiopharm 12: 428

    Google Scholar 

  • Maestroni GJM, Conti A (1996) Melatonin in human breast cancer tissue: association with nuclear grade and estrogen receptor status. Lab Invest 75: 557–561

    PubMed  CAS  Google Scholar 

  • Maestroni GJM, Conti A, Pierpaoli W (1989) Melatonin, stress and the immune system. In: Reiter RJ (ed) Pineal Research Reviews 7, Alan Liss, New York, pp 203–226

    Google Scholar 

  • Matthews MJ, Benson B (1973) Inactivation of pineal antigonadotropin by proteolytic enzymes. J Endocr 56: 339–340

    Article  PubMed  CAS  Google Scholar 

  • Matthews MJ, Benson B, Rodin AE (1971) Antigonadotropic activity in a melatonin-free extract of human pineal glands. Life Sei 10: 1375–1379

    Article  CAS  Google Scholar 

  • Noteborn HPJM, Bartsch H, Bartsch C, Mans DRA, Weusten J JAM, Flehmig B, Ebels I, Salemink CA (1988) Partial purification of (a) low molecular weight ovine pineal compound(s) with an inhibiting effect on the growth of human melanoma cells in vitro. J Neural Transm 73: 135–153

    Article  PubMed  CAS  Google Scholar 

  • Noteborn HPJM, Weusten JJAM, Bartsch H, Bartsch C, Flehmig B, Ebels I, Salemink CA (1989) Partial purification of a polypeptide extract derived from ovine pineal that suppresses the growth of human melanoma cells in vitro. J Pineal Res 6: 385–396

    Article  PubMed  CAS  Google Scholar 

  • Pevet P, Buijs RM, Dogterom J, Vivien-Roels B, Holder F C, Guerme J M, Reinharz A, Swaab DF, Ebels I,Neacsu C (1981) Peptides in the mammalian pineal gland. In: Matthews CD, Seamark RF (eds) Pineal Function, Elsevier/North-Holland Biomedical Press, pp 173–184

    Google Scholar 

  • Praast G, Bartsch C, Bartsch H, Mecke D, Lippert TH (1995) Hepatic hydoxylation of melatonin in the rat is induced by phenobarbital and 7,12-dimethylbenz[a]anthracene- implications for cancer etiology. Experientia 51: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Bartsch C, Bartsch H, Mecke D (1997) Pineal melatonin secretion seems to be reversibly inhibited by a tumor-derived melatonin-inhibiting factor. Cancer Biother Radiopharm 12: 429

    Google Scholar 

  • Shah P, Mhatre M, Kothari I (1984) Effects of melatonin on mammary carcinogenesis in intact and pinealectomised rats in varying photoperiods. Cancer Res 44: 3403–3407

    PubMed  CAS  Google Scholar 

  • Shellard SA, Whelan RDH, Hill BT (1989) Growth inhibitory and cytotoxic effects of melatonin and its metabolites on human tumor cell lines in vitro. Br J Cancer 60: 288–290

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR, Das Gupta TK, Beattie CW (1983) Photoperiod control of melanoma growth in hamsters; influence of pinealectomy and melatonin. Endocrinology 113: 469–475

    Article  PubMed  CAS  Google Scholar 

  • Tapp E (1980 a) The human pineal gland in malignancy. J Neural Transm 48:119-129

    Google Scholar 

  • Tapp E (1980b) Pineal gland in rats suffering from malignancy. J Neural Transm 48: 131–135

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebels, I., Benson, B. (2001). A Survey of the Evidence That Melatonin and Unidentified Pineal Substances Affect Neoplastic Growth. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics