Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 2001 ((YEARBOOK,volume 2001))

  • 207 Accesses

Abstract

Ventilatory strategies preventing alveolar overdistension and cyclic end-expiratory collapse are now well accepted. Nevertheless, ventilation with low tidal volume may be associated with lung atelectasis and oxygenation impairment. Atelectasis may be due to compression phenomenon or to progressive alveolar gas absorption. To achieve optimal lung recruitment and to prevent collapse of lung units, several “mneuvers” are now proposed (prone position, sighs, sustained inflations). In this chapter, we will summarize some aspects regarding alveolar recruitment and stabilization during mechanical ventilation of patients with acute respiratory distress syndrome (ARDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13

    PubMed  CAS  Google Scholar 

  2. Malbouisson L, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ and the CT Scan ARDS Study group (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. Am J Respir Crit Care Med 161:2005–2012

    PubMed  CAS  Google Scholar 

  3. Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ and the CT Scan ARDS Study Group (1998) A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 158:1644–1655

    PubMed  CAS  Google Scholar 

  4. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ and the CT Scan ARDS Study group (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med 26:857–869

    Article  PubMed  CAS  Google Scholar 

  5. Kunst PW, Böhm SH, Vasquez de Anda G, et al (2000) Regional pressure volume curves by electrical impedance tomography in a model a acute lung injury. Crit Care Med 28:178–183

    Article  PubMed  CAS  Google Scholar 

  6. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  7. Van der Kloot TE, Blanch L, Youngblood AM, et al (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161:1485–1494

    PubMed  CAS  Google Scholar 

  8. Rimensberger PC, Pristine G, Mullen JB, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27:1940–1945

    Article  PubMed  CAS  Google Scholar 

  9. Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152:1835–1846

    PubMed  CAS  Google Scholar 

  10. Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  11. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 338: 355–361

    Article  PubMed  CAS  Google Scholar 

  12. Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction in acute respiratory distress syndrome (ARDS): a multicenter randomized study. Am J Respir Crit Care Med 158:1831–1838

    PubMed  CAS  Google Scholar 

  13. The acute respiratory distress syndrome network (2000) Ventilation with low tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  14. Artiga A, Bernard GR, Carlet J, et al (1998) The American-European Consensus Conference on ARDS, Part 2. Am J Respir Crit Care Med 157:1332–1337

    Google Scholar 

  15. Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880

    PubMed  CAS  Google Scholar 

  16. Santos C, Ferrer M, Roca J, et al (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26–31

    PubMed  CAS  Google Scholar 

  17. Böhm SH, Vasquez de Anda GF, Lachmann B (1998) The open lung concept. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Berhn, pp 430–440

    Google Scholar 

  18. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  PubMed  CAS  Google Scholar 

  19. Svantesson C, Sigurdsson S, Larsson A, Jonson B (1998) Effects of recruitment of collapsed lung units on the elastic pressure-volume relationship in anaesthetised healthy adults. Acta Anaesthesiol Scand 42:1149–1156

    Article  PubMed  CAS  Google Scholar 

  20. Jonson B, Richard JC, Strauss C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-Volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178

    PubMed  CAS  Google Scholar 

  21. Ghelucci GL, Dall’Ava-Santucci J, Dhainaut JF, et al (2000) Association of PEEP with two different inflation volumes in ARDS patients: effects on passive lung deflation and alveolar recruitment. Intensive Care Med 26:870–877

    Article  Google Scholar 

  22. Hartog A, Vasquez de Anda GF, Gommers D, Kaisers U, Lachmann B (2000) At surfactant deficiency, application of “the open lung concept” prevents protein leakage and attenuates changes in lung mechanics. Crit Care Med 28:1450–1454

    Article  PubMed  CAS  Google Scholar 

  23. Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952

    Article  PubMed  CAS  Google Scholar 

  24. Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755

    Article  PubMed  CAS  Google Scholar 

  25. Guérin C, Badet M, Rosselli S, et al (1999) Effects of prone position on alveolar recruitment and oxygenation in acute injury. Intensive Care Med 25:1222–1230

    Article  PubMed  Google Scholar 

  26. Cakar N, Van der Kloot T, Youngblood M, Adams A, Nahum A. (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model Am J Respir Crit Care Med 161:1949–1956

    PubMed  CAS  Google Scholar 

  27. Broccard A, Shapiro S, Schmitz L, et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303

    Article  PubMed  CAS  Google Scholar 

  28. Nakos G, Tsangaris I, Kostanti E, et al (2000) Effect of the prone position on patients with hydrostatic pulmonary edema compared with patients with acute respiratory distress syndrome and pulmonary fibrosis. Am J Respir Crit Care Med 161:360–368

    PubMed  CAS  Google Scholar 

  29. Albert RK, Hubmayr RF (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665

    PubMed  CAS  Google Scholar 

  30. Jolliet P, Bulpa P, Chevrolet JC (1998) Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med 26:1977–1985

    Article  PubMed  CAS  Google Scholar 

  31. Curley MAQ, Thompson JE, Arnold JH (2000) The effects of early and repeated prone positioning in pediatric patients with acute lung injury. Chest 118:156–163

    Article  PubMed  CAS  Google Scholar 

  32. Borelli M, Lampatti L, Vascotto E, Fumagalli R, Pesenti A (2000) Hemodynamic and gas exchange response to inhaled nitric oxide and prone positioning in acute respiratory distress syndrome patients. Crit Care Med 28:2707–2712

    Article  PubMed  CAS  Google Scholar 

  33. Pelosi P, Tubiolo D, Mascheroni D, et al (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157:387–393

    PubMed  CAS  Google Scholar 

  34. Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880

    PubMed  CAS  Google Scholar 

  35. Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11

    PubMed  CAS  Google Scholar 

  36. Muscedere JG, Mullen JBM, Gan K (1994) Tidal ventilation at low airway pressure can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  37. Ruiz-Bailen M, Fernandez-Mondejar E, Hurtado-Ruiz B, et al (1999) Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit Care Med 27:380–384

    Article  PubMed  CAS  Google Scholar 

  38. Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MBP, Hess D (2000) Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 28:1210–1216

    Article  PubMed  CAS  Google Scholar 

  39. Foti G, Cereda M, Sparacino ME, De Marchi I, Villa F, Pesenti A (2000) Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 26:501–507

    Article  PubMed  CAS  Google Scholar 

  40. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1993) Reexpansion of atelectasis during general anaesthesia: a computed tomography study Br J Anaesth 71:788–795

    Article  PubMed  CAS  Google Scholar 

  41. Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky A (1999) Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med 25: 1297–1301

    Article  PubMed  CAS  Google Scholar 

  42. Putensen C, Rasanen J, Lopez FA (1994) Ventilation-perfusion distributions during mechanical ventilation with surimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 150:101–108

    PubMed  CAS  Google Scholar 

  43. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248

    PubMed  CAS  Google Scholar 

  44. Rouby JJ, Puybasset L, Cluzel P, et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. IL Physiological correlation and definition of an ARDS severity score. Intensive Care Med 26:1046–1056

    Article  PubMed  CAS  Google Scholar 

  45. Mink SN, Light RB, Wood LD (1981) Effect of pneumococcal lobar pneumonia on canine lung mechanics. J Appl Physiol 50:283–291

    PubMed  CAS  Google Scholar 

  46. Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ and the CT Scan ARDS Study Group (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. Intensive Care Med 26:1215–1227

    Article  PubMed  CAS  Google Scholar 

  47. Vieira SRR, Puybasset L, Richecoeur J, et al (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158: 1571–1577

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sottiaux, T. (2001). Lung Recruitment and Stabilization in ARDS. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2001. Yearbook of Intensive Care and Emergency Medicine 2001, vol 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59467-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59467-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41407-0

  • Online ISBN: 978-3-642-59467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics