Skip to main content

The β3-Adrenoceptor and its Regulation in Cardiac Tissue

  • Conference paper

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 2001 ((YEARBOOK,volume 2001))

Abstract

Since Ahlquist [1] first proposed the existence of more than one adrenergic receptor, the classification of adrenoceptors has evolved into considerable complexity. Historically, β-adrenergic receptors were subdivided into β1 (e.g., those in the myocardium) and β2 (in smooth muscle and most other sites), reflecting the equipotence of epinephrine and norepinephrine at the former receptor, whereas epinephrine is 10to 50-fold more potent at the latter [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    PubMed  CAS  Google Scholar 

  2. Lands AM, Arnold A, McAuhff JP, et al (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598

    Article  PubMed  CAS  Google Scholar 

  3. Emorine LJ, Marullo S, Briend-Sutren MM, et al (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245:1118–1121

    Article  PubMed  CAS  Google Scholar 

  4. Gauthier C, Tavernier G, Charpentier F, et al (1996) Functional beta3-adrenoceptor in the human heart. J Ghn Invest 98:556–562

    Article  CAS  Google Scholar 

  5. Gauthier C, Leblais V, Kobzik L, et al (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384

    Article  PubMed  CAS  Google Scholar 

  6. Krief S, Lonnqvist F, Raimbault S, et al (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91:344–349

    Article  PubMed  CAS  Google Scholar 

  7. Berkowitz DE, Nardone NA, Smiley RM, et al (1995) Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol 289:223–228

    Article  PubMed  CAS  Google Scholar 

  8. Moniotte S, Gauthier C, Feron O, et al (1999) The altered response to beta-adrenergic stimulation in faihng hearts is associated with an upregulation of the beta-3 adrenoceptor and its coupled Gi-protein. Circulation 100:1–507 (Abst)

    Google Scholar 

  9. Chamberlain PD, Jennings KH, Paul F, et al (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23: 1057–1065

    Article  PubMed  CAS  Google Scholar 

  10. Kaumann AJ, Preitner F, Sarsero D, et al (1998) (-)-CGP 12177 causes cardiostimulation and binds to cardiac putative beta 4-adrenoceptors in both wild-type and beta 3-adrenoceptor knockout mice. Mol Pharmacol 53:670–675

    PubMed  CAS  Google Scholar 

  11. Kaumann AJ (1996) (-)-CGP 12177-induced increase of human atrial contraction through a putative third beta-adrenoceptor. Br J Pharmacol 117:93–98

    PubMed  CAS  Google Scholar 

  12. Skeberdis VA, Jurevicius J, Fischmeister R (2000) β3-adrenergic regulation of the L-type calcium current in human atrial myocytes. Biophys J 76: A343 (Abst)

    Google Scholar 

  13. Gauthier C, Tavernier G, Trochu JN, et al (1999) Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther 290:687–693

    PubMed  CAS  Google Scholar 

  14. Cheng H, Onishi K, Zhang Z, et al (1998) Functionalβ3-adrenergic receptors in the canine myo-cardium. Circulation 98:I-122 (Abst)

    Google Scholar 

  15. Kaumann AJ, Molenaar P (1996) Differences between the third cardiac beta-adrenoceptor and the colonic beta 3-adrenoceptor in the rat. Br J Pharmacol 118:2085–2098

    PubMed  CAS  Google Scholar 

  16. Cohen ML, Bloomquist W, Kriauciunas A, et al (1999) Aryl propanolamines: comparison of activity at human beta3 receptors, rat beta3 receptors and rat atrial receptors mediating tachycardia. Br J Pharmacol 126:1018–1024

    Article  PubMed  CAS  Google Scholar 

  17. Kitamura T, Onishi K, Dohi K, et al (2000) The negative inotropic effect of beta3-adrenoceptor stimulation in the beating guinea pig heart. J Cardiovasc Pharmacol 35:786–790

    Article  PubMed  CAS  Google Scholar 

  18. Donckier J, Massart PE, Van Mechelen H, et al (2000) Stimulation of vascular beta-3 adrenoceptors produces profound vasodilation and hypotension in hypertensive dogs. Circulation 102: 11–78 (Abst)

    Google Scholar 

  19. Wheeldon NM, McDevitt DG, Lipworth BJ (1994) Cardiac effects of the beta 3-adrenoceptor agonist BRL35135 in man. Br J Clin Pharmacol 37:363–369

    PubMed  CAS  Google Scholar 

  20. Wheeldon NM, McDevitt DG, Lipworth BJ (1993) Investigation of putative cardiac beta 3-adren-oceptors in man. Q J Med 86:255–261

    PubMed  CAS  Google Scholar 

  21. Tavernier G, Gahtzky J, Bousquet-Melou A, et al (1992) The positive chronotropic effect induced by BRL 37344 and CGP 12177, two beta-3 adrenergic agonists, does not involve cardiac beta adrenoceptors but baroreflex mechanisms. J Pharmacol Exp Ther 263:1083–1090

    PubMed  CAS  Google Scholar 

  22. Shen YT, Cervoni P, Claus T, et al (1996) Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J Pharmacol Exp Ther 278:1435–1443

    PubMed  CAS  Google Scholar 

  23. Kaumann AJ (1997) Four beta-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 18:70–76

    Article  PubMed  CAS  Google Scholar 

  24. Kompa AR, Summers RJ (1999) Desensitization and resensitization of beta 1-and putative beta 4-adrenoceptor mediated responses occur in parallel in a rat model of cardiac failure. Br J Pharmacol 128:1399–1406

    Article  PubMed  CAS  Google Scholar 

  25. Lowe MD, Grace AA, Kaumann AJ (1999) Blockade of putative beta4-and beta 1-adrenoceptors by Carvedilol in ferret myocardium. Naunyn Schmiedebergs Arch Pharmacol 359:400–403

    Article  PubMed  CAS  Google Scholar 

  26. Sarsero D, Molenaar P, Kaumann AJ (1998) Vahdity of (-)-[3H]-CGP 12177A as a radioligand for the ‘putative beta4-adrenoceptor’ in rat atrium. Br J Pharmacol 123:371–380

    Article  PubMed  CAS  Google Scholar 

  27. Malinowska B, Schlicker E (1997) Further evidence for differences between cardiac atypical beta-adrenoceptors and brown adipose tissue beta3-adrenoceptors in the pithed rat. Br J Pharmacol 122:1307–1314

    Article  PubMed  CAS  Google Scholar 

  28. Konkar AA, Zhai Y, Granneman JG (2000) Betal-adrenergic receptors mediate beta3-adrener-gic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 57:252–258

    PubMed  CAS  Google Scholar 

  29. Chaudhry A, Granneman JG (1994) Influence of cell type upon the desensitization of the beta 3-adrenergic receptor. J Pharmacol Exp Ther 271:1253–1258

    PubMed  CAS  Google Scholar 

  30. Begin-Heick N (1995) Beta 3-adrenergic activation of adenylyl cyclase in mouse white adipocytes: modulation by GTP and effect of obesity. J Cell Biochem 58:464–473

    Article  PubMed  CAS  Google Scholar 

  31. Balligand JL, Kelly RA, Marsden PA, et al (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90:347–351

    Article  PubMed  CAS  Google Scholar 

  32. Mery PF, Lohmann SM, Walter U, et al (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammahan cardiac myocytes. Proc Natl Acad Sci USA 88:1197–1201

    Article  PubMed  CAS  Google Scholar 

  33. Wahler GM, Dolhnger SJ (1995) Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 268: C45–C54

    PubMed  CAS  Google Scholar 

  34. Shah AM, Mebazaa A, Wetzel RC, et al (1994) Novel cardiac myofilament desensitizing factor released by endocardial and vascular endothehal cells. Circulation 89:2492–2497

    PubMed  CAS  Google Scholar 

  35. Mery PF, Pavoine C, Belhassen L, et al (1993) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295

    PubMed  CAS  Google Scholar 

  36. Torres J, Darley-Usmar V, Wilson MT (1995) Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J 312: 169–173

    PubMed  CAS  Google Scholar 

  37. Gross WL, Bak MI, Ingwall JS, et al (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    Article  PubMed  CAS  Google Scholar 

  38. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    Article  PubMed  CAS  Google Scholar 

  39. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79: 363–380

    PubMed  CAS  Google Scholar 

  40. Balligand JL, Cannon PJ (1997) Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 17:1846–1858

    Article  PubMed  CAS  Google Scholar 

  41. Leblais V, Demolombe S, Vallette G, et al (1999) beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. J Biol Chem 274:6107–6113

    Article  PubMed  CAS  Google Scholar 

  42. Riordan JR, Rommens JM, Kerem B, et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  43. Leblais V, Escande D, Gauthier G (1999) Beta-3 adrenoceptors regulate CFTR conductance through a PTX-sensitive G protein. Circulation 100:1–488 (Abst)

    Google Scholar 

  44. Kathofer S, Zhang W, Karle C, Thomas D, Schoels W, Kiehn J (2000) Functional Coupling of Human beta 3-Adrenoreceptors to the KvLQT1/MinK Potassium Channel. J Biol Chem 275: 26743–26747

    PubMed  CAS  Google Scholar 

  45. Bristow MR (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 4:205–211

    Article  Google Scholar 

  46. Brodde OE (1991) Beta 1-and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    PubMed  CAS  Google Scholar 

  47. Böhm M, Lohse MJ (1994) Quantification of beta-adrenoceptors and beta-adrenoceptor kinase on protein and mRNA levels in heart failure. Eur Heart J 15(Suppl D): 30–34

    PubMed  Google Scholar 

  48. Ungerer M, Bohm M, Elce JS, et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    PubMed  CAS  Google Scholar 

  49. Bohm M, Eschenhagen T, Gierschik P, et al (1994) Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26:133–149

    Article  PubMed  CAS  Google Scholar 

  50. Feldman AM, Cates AE, Veazey WB, et al (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    Article  PubMed  CAS  Google Scholar 

  51. Langin D, Tavernier G, Lafontan M (1995) Regulation of beta 3-adrenoceptor expression in white fat cells. Fundam Clin Pharmacol 9:97–106

    Article  PubMed  CAS  Google Scholar 

  52. Kumar A, Brar R, Wang P, et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276: R265–R276

    PubMed  CAS  Google Scholar 

  53. Muller-Werdan U, Schumann H, Loppnow H, et al (1998) Endotoxin and tumor necrosis factor alpha exert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J Mol Cell Cardiol 30:1027–1036

    Article  PubMed  CAS  Google Scholar 

  54. Muller-Werdan U, Schumann H, Fuchs R, et al (1997) Tumor necrosis factor alpha (TNF alpha) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol 29: 2915–2923

    Article  PubMed  CAS  Google Scholar 

  55. Oral H, Dorn GW, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    Article  PubMed  CAS  Google Scholar 

  56. Balligand JL, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91:2314–2319

    Article  PubMed  CAS  Google Scholar 

  57. Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS (1995) Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 95:360–366

    Article  PubMed  CAS  Google Scholar 

  58. Hare JM, Loh E, Creager MA, Colucci WS (1995) Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation 92:2198–2203

    PubMed  CAS  Google Scholar 

  59. Drexler H, Kastner S, Strobel A, et al (1998) Expression, activity and functional significance of inducible nitric oxide synthase in the faihng human heart. J Am Coll Cardiol 32:955–963

    Article  PubMed  CAS  Google Scholar 

  60. Hare JM, Givertz MM, Creager MA, Colucci WS (1998) Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation 97:161–166

    PubMed  CAS  Google Scholar 

  61. Yamamoto S, Tsutsui H, Tagawa H, et al (1997) Role of myocyte nitric oxide in beta-adrenergic hyporesponsiveness in heart failure. Circulation 95:1111–1114

    PubMed  CAS  Google Scholar 

  62. Rees DD, Monkhouse JE, Cambridge D, et al (1998) Nitric oxide and the haemodynamic profile of endotoxin shock in the conscious mouse. Br J Pharmacol 124:540–546

    Article  PubMed  CAS  Google Scholar 

  63. Ullrich R, Scherrer-Crosbie M, Bloch KD, et al (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102: 1440–1446

    PubMed  CAS  Google Scholar 

  64. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  65. Goldhaber JI, Kim KH, Natterson PD, et al (1996) Effects of TNF-alpha on [Ca2-H]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271: H1449–H1455

    PubMed  CAS  Google Scholar 

  66. Yamashita T, Kawashima S, Ohashi Y, et al (2000) Resistance to endotoxin shock in transgenic mice overexpressing endothehal nitric oxide synthase. Circulation 101:931–937

    PubMed  CAS  Google Scholar 

  67. Asai K, Yang GP, Geng YJ, et al (1999) Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(sα) mouse. J Clin Invest 104:551–558

    Article  PubMed  CAS  Google Scholar 

  68. Engelhardt S, Hein L, Wiesmann F, et al (1999) Progressive hypertrophy and heart failure in betal-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96:7059–7064

    Article  PubMed  CAS  Google Scholar 

  69. Liggett SB, Tepe NM, Lorenz JN, et al (2000) Early and delayed consequences of beta-2 adrenergic receptor overexpression in mouse hearts. Circulation 101:1707–1714

    PubMed  CAS  Google Scholar 

  70. Dorn GW, Tepe NM, Lorenz JN, et al (1999) Low-and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc Natl Acad Sci USA 96:6400–6405

    Article  PubMed  CAS  Google Scholar 

  71. Candelore MR, Deng L, Tota L, et al (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther 290:649–655

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moniotte, S., Balligand, JL. (2001). The β3-Adrenoceptor and its Regulation in Cardiac Tissue. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2001. Yearbook of Intensive Care and Emergency Medicine 2001, vol 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59467-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59467-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41407-0

  • Online ISBN: 978-3-642-59467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics