Skip to main content

Perspektiven der klinischen Multiple-Sklerose-Forschung und -Therapie

  • Conference paper
  • 230 Accesses

Zusammenfassung

Dieses Kapitel gibt eine Übersicht über drei besonders aktuelle Bereiche neuroimmunologischer Forschung. Im ersten Teil werden verschiedene Therapieansätze dargestellt, die trotz viel versprechender immunbiologischer Konzepte in klinischen Studien nicht zu überzeugenden Ergebnissen führten. Hierzu gehört insbesondere die Blockierung des Entzündungsmediators TNF-a, die in 2 Studien (Lenercept, Infliximab) sogar zunegativen Effekten bei Patienten geführt hatte. Diese Resultate werfen kritische Fragen bezüglich Läsionspathogenese und Wertigkeit der Kernspintomografie in der Beurteilung klinischer Therapieeffekte auf. Nach Darstellung des jeweiligen immunbiologischen Hintergrundes werden außerdem die Studien für das Immunsuppressivum Linomide sowie die Studien zur oralen Toleranzinduktion und zum Konzept der „verändertenPeptidliganden“ (APL) diskutiert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aggarwal BB, Natarjan K (1996) Tumor necrosis factor: Developments during the last decade. Eur Cytokine Netw 7:93–124

    PubMed  CAS  Google Scholar 

  • Andersen O, Lycke J, Tollesson PO et al. (1996) Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology 47:895–900

    PubMed  CAS  Google Scholar 

  • Bazzoni F, Beutler B (1996) The tumor receptor factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: Do cytokines trigger off exacerbations? Acta Neurol Scand 78:318–323

    Article  PubMed  CAS  Google Scholar 

  • Besser M, Wank R (1999) Clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Thl/Th2 polarized expression of their receptors. J Immunol 162:6303–6306

    PubMed  CAS  Google Scholar 

  • Bielekova B, Goodwin B, Richert N, McFarland HF, Martin R (2000) Antigen-specific immunomodulation confirms the encephalitogenic potential of Myelin basic protein peptide (83–99) in Multiple Sclerosis. Neurology 54 (Suppl 3):A148

    Google Scholar 

  • Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 265:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Chofflon M, Juillard C, Juillard P, Gauthier G, Grau GE (1992) Tumor necrosis factor-a production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 3:523–531

    PubMed  CAS  Google Scholar 

  • Cohen IR (1992) The cognitive paradigm and the immunological homunculus. Immunol Today 13:490–494

    Article  PubMed  CAS  Google Scholar 

  • Compston A (1994) Future prospects for the management of multiple sclerosis. Ann Neurol 36:S146–S150

    Article  PubMed  Google Scholar 

  • Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 90:10984–10988

    Article  PubMed  CAS  Google Scholar 

  • Elliott MJ, Maini RN, Feldmann M et al. (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibody to tumor necrosis factor alpha. Arthritis Rheum 36:1681–1690

    Article  PubMed  CAS  Google Scholar 

  • Eugster H-P, Frei K, Bachmann R, Bluethmann H, Lassmann H, Fontana A (1999) Severity of symptoms and demyelination in MOG induced EAE depends on TNFR1. EJI 29(2):626–32

    CAS  Google Scholar 

  • Fazekas F, Barkhof F, Filippi M et al. (1999) The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 53:448–456

    PubMed  CAS  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  • Flügel A, Willem M, Berkowicz T, Wekerle H (1999) Gene transfer into CD4+ T lymphocytes: Green fluorescent protein engineered, encephalitogenic T cells used to illuminate immune responses in the brain. Nature Med 5(7):843–847

    Article  PubMed  Google Scholar 

  • Francis G, Evans A, Panitch H (1997) MRI results of a phase III trial of oral myelin in relapsing-remitting multiple sclerosis [abstract]. Ann Neurol 42:467

    Google Scholar 

  • Goebels N, Skulina C, Wekerle H, Hohlfeld R (2000) Detection of identical expanded T cell clones in the CSF and peripheral blood of multiple sclerosis patients during relapse. J Neurology 247:111/40

    Google Scholar 

  • Goebels N, Wiesener S, Roers A et al. (1999) Identical expanded CD8+ T cell clones in both muscle and peripheral blood of polymyositis patients detected by CDR3 spectratyping.Neurology 52 (Suppl 2):A463

    Google Scholar 

  • Gonzalo JA, Gonzalez-Garcia A, Kalland T, Hedlund G, Martinez AC, Kroemer G (1993) Linomide, a novel immunomodulator that prevents death in four models of septic shock. Eur J Immunol 23:2372–2378

    Article  PubMed  CAS  Google Scholar 

  • Gorski J, Piatek T, Yassai M, Maslanka K (1995) Improvements in repertoire analysis by CDR3 size spectratyping. Ann N Y Acad Sci 756:99–102

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg DL, Moalem G, He J, Mor F, Cohen IR, Schwarz M (1998) Accumulation of passively transferred primed T cells independently of their antigen specificity following nervous system trauma. J Neuroimmunol 89:88–96

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Pagliusi SR, Hohn A, Leibrock A, Barde Y-A (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9:2459–2464

    PubMed  CAS  Google Scholar 

  • Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120:865–916

    Article  PubMed  Google Scholar 

  • Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120:865–916

    Article  PubMed  Google Scholar 

  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmun 107:161–166

    Article  CAS  Google Scholar 

  • Imamura K, Suzumura A, Hayashi F, Marunouchi T (1993) Cytokine production by peripheral blood monocytes/macrophages in multiple sclerosis patients. Acta Neurol Scand 87:281–285

    Article  PubMed  CAS  Google Scholar 

  • Karussis DM, Lehmann D, Slavin S et al. (1993) Inhibition of acute, experimental autoimmune encephalomyelitis by the synthetic immunomodulator linomide. Ann Neurol 34:654–660

    Article  PubMed  CAS  Google Scholar 

  • Karussis DM, Lehmann D, Slavin S et al. (1993) Treatment of chronic-relapsing experimental autoimmune encephalomyelitis with the synthetic immunomodulator linomide (quinoline-3-carboxamide). Proc Natl Acad Sci USA 90:6400–6404

    Article  PubMed  CAS  Google Scholar 

  • Karussis DM, Meiner Z, Lehmann D et al. (1996) Treatment of secondary progressive multiple sclerosis with the immunomodulator linomide. Neurology 47:341–346

    PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor (BDNF) in vitro and in brain lesions: A neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Nanduri V, Jing S et al. (1991) The trkB tyrosine protein kinase is a receptor forbrain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403

    Article  PubMed  CAS  Google Scholar 

  • Klinkert WEF, Kojima K, Lesslauer W, Rinner W, Lassmann H, Wekerle H (1997) TNF-a receptor fusion protein prevents experimental autoimmune encephalomyelitis and demyelination in Lewis rats: An overview. J Neuroimmunol 72:163–168

    Article  PubMed  CAS  Google Scholar 

  • Körner H, Lemckert FA, Chaudhri G, Etteldorf S, Sedgwick JD (1997) Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite acticated T cell infiltration to the central nervous system. Eur J Immunol 27(8): 1973–1981

    Article  PubMed  Google Scholar 

  • Kramer R, Zhang Y, Gehrmann J, Gold R, Thoenen H, Wekerle H (1995) Gene transfer through the blood-nerve barrier: Nerve growth factor engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nature Med 1:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Labouyrie E, Dubus P, Groppi A et al. (1999) Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154(2):405–415

    Article  PubMed  CAS  Google Scholar 

  • Leibrock J, Lottspeich F, Hohn A et al. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152

    Article  PubMed  CAS  Google Scholar 

  • Lewin GR, Barde Y-A (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Marino MW, Wong G et al. (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nature Med 4(l):78–83

    Google Scholar 

  • Lomen-Hoerth C, Shooter EM (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J Neurochem 64:1780–1789

    Article  PubMed  CAS  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18(14):5354–5365

    PubMed  CAS  Google Scholar 

  • Miller DH, Albert PS, Barkhof F et al. (1996) Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Ann Neurol 39:6–16

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomv Nature Med 5(l):49–55

    Google Scholar 

  • Moser HW (1997) Adrenoleukodystrophy: Phenotype, genetics, pathogenesis and therapv Brain 120:1485–1508

    Google Scholar 

  • Naparstek Y, Ben-Nun A, Holoshitz J et al. (1983) T lymphocyte line producing or vaccinating against autoimmune encephalomyelitis (EAE). Functional activation induces peanut agglutinin receptors and accumulation in the brain and thymus of line cells. Eur J Immunol 13:418–423

    CAS  Google Scholar 

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit class II inducibility of microglia: Involvement of the p75 receptor. Proc Natl Acad Sci USA 95:5779–5784

    Article  PubMed  CAS  Google Scholar 

  • Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3:397–405

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH, Gold R, Hartung H-P (1999) Treatment of multiple sclerosis: Recent trial and future perspectives. Curr Opin Neurol 12:279–293

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH, Wolinsky JS, Lublin FD et al. (2000) Linomide in relapsing and secondary progressive MS. Part I: Trial design and clinical results. Neurology 54:1726–1733

    CAS  Google Scholar 

  • Panitch H, Francis G, and the Oral Myelin Study Group (1997) Clinical results of a phase III trial of oral myelin in relapsing-remitting multiple sclerosis [abstract]. Ann Neurol 42:459

    Google Scholar 

  • Pannetier C, Even J, Kourilsky P (1995) T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol Today 16:176–181

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Andersson P-B, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Tani M (1998) Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation? Trends Neurosci 21:154–159

    Article  PubMed  CAS  Google Scholar 

  • Rapalino 0, Lazarov-Spiegler O, Agranov E et al. (1998) Implantation of stimulated homologous marophages results in partial recovery of paraplegic rats. Nature Med. 4(7):814–821

    Google Scholar 

  • Rieckmann P, Alb recht M, Kitze B et al. (1995) Tumor necrosis factor-a messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37:82–88

    Google Scholar 

  • Rudick RA, Ransohoff RM (1992) Cytokine secretion by multiple sclerosis monocytes. Relationship to disease activity. Arch Neurol 49:265–270

    CAS  Google Scholar 

  • Sagot Y, Vejsada R, Kato AC (1997) Clinical and molecular aspects of motoneurone diseases: Animal models, neurotrophic factors and Bcl-2 oncoprotein. Trends Pharmacol Sci 18:330–337

    PubMed  CAS  Google Scholar 

  • Santambrogio L, Benedetti M, Chao MV et al. (1994) Nerve growth factor production by lymphocytes. J Immunol 153:4488–4495

    PubMed  CAS  Google Scholar 

  • Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. TINS 22(7):295–299

    PubMed  CAS  Google Scholar 

  • Schwid SR, Trotter JL (2000) Lessons from Linomide: A failed trial but not a failure. Neurology 54:1716–1717

    PubMed  CAS  Google Scholar 

  • Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949–954

    Article  PubMed  CAS  Google Scholar 

  • Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VJ, Jones KJ (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (seid) mice. J Neurosci RC7:l–5

    Google Scholar 

  • Sharief MK, Hentges R (1991) Association between tumor necrosis factor-a and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472

    Article  PubMed  CAS  Google Scholar 

  • Sloan-Lancaster J, Allen PM (1996) Altered peptide ligand-induced partial T cell activation: Molecular mechanisms and role in T cell biology. Annu Rev Immunol 14:1–27

    Article  PubMed  CAS  Google Scholar 

  • Sloan-Lancaster J, Evavold BD, Allen PM (1993) Induction of T-cell anergy by altered T-cell receptor ligand on live antigen-presenting cells. Nature 363:156–159

    Article  PubMed  CAS  Google Scholar 

  • Smilek DE, Wraith DC, Hodgkinson S, Dwivedy S, Steinman L, McDevitt HO (1991) A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 88:9633–9637

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum D, Arnon R, Sela M (1999) Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. PNAS 96:3842–3847

    Article  PubMed  CAS  Google Scholar 

  • The Lenercept MS Study Group, The UBC MS/MRI Analysis Group (1999) TNF neutralization in MS. Results of a randomized placebo controlled multicenter trial. Neurology 53:457–465

    Google Scholar 

  • Tian J, Olcott A, Hanssen L, Zekzer D, Kaufman DL (1999) Antigen-based immunotherapy for autoimmune disease: From animal models to humans? Immun Today 20(4): 190–194

    Article  PubMed  CAS  Google Scholar 

  • Torcia M, Bracci-Laudiero L, Lucibello M et al. (1996) Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85:345–356

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesion of multiple sclerosis. N Engl J Med 338(5):278–285

    Article  PubMed  CAS  Google Scholar 

  • Van Oosten BW, Barkhof F, Truyen L et al. (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–1534

    PubMed  Google Scholar 

  • Wei RT, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta 1 (TGF-beta 1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. Journal of Neuro-immunology 95:8–18

    CAS  Google Scholar 

  • Weilbach FX, Gold R (1999) Disease modifying treatments for multiple sclerosis. What is the horizon? CNS Drugs 11(2):133–157

    Google Scholar 

  • Weinblatt ME, Kremer JM, Bankhurst AD et al. (1999) A trial of Etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. New Eng J Med 340(4):253–259

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Friedman A, Miller A et al. (1994) Oral tolerance: Immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 12:809–837

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Mackin GA, Matsui M et al. (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259:1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  • Wiendl H, Neuhaus 0, Kappos L, Hohlfeld R (2000) Multiple Sklerose: Aktuelle Übersichtzu fehlgeschlagenen oder abgebrochenen Therapiestudien. Nervenarzt 71:597–610

    Google Scholar 

  • Windhagen A, Scholz C, Höllsberg P, Fukaura H, Sette A, Hafler DA (1995) Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2:373–380

    Article  PubMed  CAS  Google Scholar 

  • Wolinsky JS, Narayana PA, Noseworthy JH et al. (2000) Linomide in relapsing and secondary progressive MS. Part II: MRI results. Neurology 54:1734–1741

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goebels, N., Wiendl, H., Hohlfeld, R. (2001). Perspektiven der klinischen Multiple-Sklerose-Forschung und -Therapie. In: Zettl, U.K., Mix, E. (eds) Multiple Sklerose. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59453-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59453-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41121-5

  • Online ISBN: 978-3-642-59453-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics