Skip to main content

The Radiologist’s Role in Radiation Exposure during Chest Computed Tomography

  • Conference paper
  • 119 Accesses

Abstract

Stochastic somatic and genetic effects of ionising radiation exposure are recognised to be biologically significant. Effective dose is the single best parameter to estimate the biologic impact. Depending on the geographic location, natural population exposure in central Europe is estimated to be around 3 mSv/year and medical exposure 1–1.5 mSv/year (Table 1). More important, the relative contribution of 25–50% [1, 2, 3, 4] of CT to the medical exposure of the population is increasing due both to a still increasing number of studies and a decreasing contribution by non-computed tomography (CT) studies (caused by decreasing frequency and individual dose due to more and more pulsed fluoroscopy). Individual exposure through chest examinations has a wide range between around 0.05 mSv for a single posteroanterior chest radiograph and more than 20 mSv for cardiac intervention (Table 2). CT is characterised by an extraordinary medical usefulness but also a relatively high individual exposure. This fact makes it important both for the medical doctor requesting a study and the radiologist performing it to be aware of the exposure, to check for alternatives without ionising radiation and to reduce exposure during CT studies to the very minimum needed medically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jung H (1995) Strahlenrisiko: widersprüchliche angaben verunsichern öffentlichkeit und patienten. Deutsche Röntgengesellschaft: Informationen 3

    Google Scholar 

  2. Shrimpton PC, Wall BF (1995) The increasing importance of X-ray computed tomography as a source of medical exposure. Radiat Prot Dosim 57: 413–415

    Google Scholar 

  3. Kaul A, Bauer J, Bernhardt D, Nosske D, Veit R (1997) Effective doses to members of the public from the diagnostic application of the ionizing radiation in Germany. Eur Radiol 7: 1127–1132

    Article  PubMed  CAS  Google Scholar 

  4. Dixon A (ed) (1998) RCR Guidelines Working Party, 4th edn. Making the best use of a Department of Clinical Radiology. Royal College of Radiologists, p 14

    Google Scholar 

  5. Lenzen H, Roos N, Diederich S, Meier N (1996) Strahlenexposition bei der niedrigdosiscomputertomographie des thorax. Radiologe 36: 483–488

    Article  PubMed  CAS  Google Scholar 

  6. Heinz-Peer G, Weninger F, Nowotny R, Herold CJ (1996) Strahlendosis der verschiedenen CT-verfahren in der lungendiagnostik. Radiologe 36: 470–474

    Article  PubMed  CAS  Google Scholar 

  7. Poletti JL (1996) Patient doses from CT in New Zealand and a simple method for estimating effective dose. Br J Radiol 69: 432–436

    Article  PubMed  CAS  Google Scholar 

  8. Geleijns J, van Unnik JG, Zoetelief J, Zweers D, Broerse JJ (1994) Comparison of two methods for assessing patient dose from computed tomography. Br J Radiol 67: 360–365

    Article  PubMed  CAS  Google Scholar 

  9. Jones DG, Shrimpton PC (1991) Survey of CT practice in the UK. Part 3: normalised organ doses calculated using Monte Carlo techniques (NRPB-R250). National Radiological Protection Board, Chilton, UK

    Google Scholar 

  10. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9: 555–562

    Article  PubMed  CAS  Google Scholar 

  11. Mini RL, Vock P, Müry R, Schneeberger PP (1995) Radiation exposure of patients who undergo CT of the trunk. Radiology 195: 557–562

    PubMed  CAS  Google Scholar 

  12. Wade JP, Weyman JC, Goldstone KE (1997) CT standard protocols are of limited value in assessing actual patient dose. Br J Radiol 70: 1146–1151

    PubMed  CAS  Google Scholar 

  13. Rothenberg LN, Pentlow KS (1992) AAPM tutorial: radiation dose in CT. Radiographics 12: 1225–1243

    PubMed  CAS  Google Scholar 

  14. Diederich S, Lenzen H, Windmann R, Puskas Z, Yelbuz TM, Henneken S, Klaiber T, Eameri M, Roos N, Peters PE (1999) Pulmonary nodules: experimental and clinical studies at low-dose CT. Radiology 213 (P): 289–298

    PubMed  CAS  Google Scholar 

  15. Schöpf UO, Becker CR, Bruening RD, Huber AM, Hong C, Reiser MF (1999) Multidetector-array spiral CT imaging of focal and diffuse lung disease: thin-collimation data acquisition with reconstruction of contiguous and HRCT sections. Radiology 213 (P): 259

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vock, P., Brehmer, U. (2001). The Radiologist’s Role in Radiation Exposure during Chest Computed Tomography. In: Marincek, B., Ros, P.R., Reiser, M., Baker, M.E. (eds) Multislice CT: A Practical Guide. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59450-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59450-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63979-1

  • Online ISBN: 978-3-642-59450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics