Skip to main content

Characterization of Tensor Symmetries by Group Ring Subspaces and Computation of Normal Forms of Tensor Coordinates

  • Conference paper
Algebraic Combinatorics and Applications
  • 468 Accesses

Zusammenfassung

We consider the problem to determine normal forms of the coordinates of covariant tensors T ∈ TrV of order r over a finite-dimensional 𝕂-vector space, 𝕂 = ℝ, ℂ. A connection between such tensors and the group ring 𝕂[Sr] can be established by assigning a group ring element MATHYPE to every tensor T ∈ TrV and every r-tuple b = (v1,…,vr) ∈ Vr of vectors. Then each symmetry class T ⊆ TrV of tensors can be characterized by a linear subspace W ⊆ 𝕂[Sr] which is spanned by all Tb of the T ∈ T. The elements of the orthogonal subspace W⊥ ⊆ 𝕂[Sr]* of W within the dual space 𝕂[Sr]* yield the set of all linear identities that are fulfilled by the coordinates of all tensors T ∈ T. These identities can be used to calculate linearly independent coordinates (i.e. normal forms) of the T ∈ T.

If the T ∈ T are single tensors and dim V ≥ r, then W is a left ideal W = 𝕂 [Sr] • e generated by an idempotent e. In the case of tensor products T1 ⊗T2 ⊗ … ⊗Tm or T⊗ … ⊗T (m-times), W is a left ideal whose structure is described by a LittlewoodRichardson product [a1][a2] … [am] or a plethysm [a] 2299 [m], respectively. We have also treated the cases in which dim V 003C r or the T 2208 T contain aditional contractions of index pairs. In these cases characterizing linear subspaces W 2286 𝕂 [Sr] with a structure \(W = f \cdot \mathbb{K}[{{S}_{r}}] \cdot e\,or\,W = \sum\nolimits_{{i = 1}}^{k} {{{a}_{i}} \cdot \mathbb{K}[{{S}_{r}}] \cdot e}\) come into play. Here e, f ∈ 𝕂 [Sr] are idempotents.

We have implemented a Mathematica package by which the characterizing idempotents and bases of the spaces W and the identities from ⊥ can be determined in all above cases. This package contains an ideal decomposition algorithm and tools such as the Littlewood-Richardson rule, plethysms and discrete Fourier transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Boerner, H.: Darstellungen von Gruppen (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen: Vol. 74 ). Berlin, Gottingen, Heidelberg: Springer-Verlag, 1955.

    Google Scholar 

  2. Clausen, M. and U. Baum: Fast Fourier Transforms. Mannheim, Leipzig, Wien, Zürich: BI Wissenschaftsverlag, 1993.

    Google Scholar 

  3. Eisenreich, G.: Lexikon der Algebra. Berlin: Akademie-Verlag, 1989.

    MATH  Google Scholar 

  4. Fiedler, B.: A use of ideal decomposition in the computer algebra of tensor expressions. Z. Anal. Anw. 16, 1 (1997), 145–164.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiedler, B.: An algorithm for the decomposition of ideals of the group ring of a symmetric group. In: Actes 39e Séminaire Lotharingien de Combinatoire, Thurnau, 1997. Ed.: Kerber, A. (Publ. I.R.M.A. Strasbourg). Institut de Recherche Mathématique Avancée, Université Louis Pasteur et C.N.R.S. (URA 01), 1998. Electronically published: http://cartan.u-strasbg.fr:80/slc. B39e, 26 pp.

    Google Scholar 

  6. Fiedler, B.: An algorithm for the decomposition of ideals of semi-simple rings and its application to symbolic tensor calculations by computer. Habilitationsschrift. Leipzig, Germany: Universität Leipzig, November 1999. Fakultät für Mathematik und Informatik.

    Google Scholar 

  7. Fulling, S., King, R., Wybourne, B. and C. Cummins: Normal forms for tensor polynomials: I. The Riemann tensor. Class. Quantum Grav. 9 (1992), 1151–1197.

    Article  MathSciNet  MATH  Google Scholar 

  8. Günther, P.: Huygens’ Principle and Hyperbolic Equations (Perspectives in Mathematics: Vol. 5 ). Boston, San Diego, New York, Berkeley, London, Sydney, Tokyo, Toronto: Academic Press, Inc., 1988.

    Google Scholar 

  9. James, G. D. and A. Kerber: The Representation Theory of the Symmetric Group (Encyclopedia of Mathematics and its Applications: Vol. 16 ). Reading, Mass., London, Amsterdam, Don Mills, Ont., Sidney, Tokyo: Addison-Wesley Publishing Company, 1981.

    Google Scholar 

  10. Kerber, A.: Representations of Permutation Groups (Lecture Notes in Mathematics: Vol. 240, 495). Berlin, Heidelberg, New York: Springer-Verlag, 1971, 1975.

    Google Scholar 

  11. Kerber, A.: Algebraic combinatorics via finite group actions. Mannheim, Wien, Zürich: Bl-Wiss.-Verl., 1991.

    Google Scholar 

  12. Kerber, A., Kohnert, A. and A. Lascoux: Symmetrica, an object oriented computer-algebra system for the symmetric group. J. Symbolic Computation 14 (1992), 195–203.

    Article  MathSciNet  MATH  Google Scholar 

  13. Littlewood, D.: The Theory of Group Characters and Matrix Representations of Groups (2. Ed.). Oxford: Clarendon Press, 1950.

    Google Scholar 

  14. Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford: Clarendon Press, 1979.

    MATH  Google Scholar 

  15. Merris, R.: Multilinear Algebra (Algebra, Logic and Applications Series: Vol. 8 ). Amsterdam: Gordon and Breach Science Publishers, 1997.

    Google Scholar 

  16. Sänger, F.: Plethysmen von irreduziblen Darstellungen symmetrischer Gruppen. Dissertation. Aachen: Rheinisch-Westfälische Technische Hochschule, Mathematisch-Naturwissenschaftliche Fakultät, 1980.

    Google Scholar 

  17. Schönert, M. et al.: GAP — Groups, Algorithms, and Programming ( fifth Ed. ). Aachen, Germany: Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, 1995.

    Google Scholar 

  18. Schouten, J. A.: Der Ricci-Kalkül (Die Grundlehren der Mathematischen Wissenschaften: Vol. 10 ). Berlin: Verlag von Julius Springer, 1924.

    Google Scholar 

  19. van der Waerden, B.: Algebra. 9., 6. Ed., Vol. I, II. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer- Verlag, 1993.

    Chapter  Google Scholar 

  20. Weyl, H.: The Classical Groups, their Invariants and Representations. Princeton, New Jersey: Princeton University Press, 1939.

    Google Scholar 

  21. Wünsch, V.: Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Veränderlichen. Math. Nachr. 47 (1970), 131–154.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiedler, B. (2001). Characterization of Tensor Symmetries by Group Ring Subspaces and Computation of Normal Forms of Tensor Coordinates. In: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (eds) Algebraic Combinatorics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59448-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59448-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41110-9

  • Online ISBN: 978-3-642-59448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics