Skip to main content

Constructing Objects up to Isomorphism, Simple 9-Designs with Small Parameters

  • Conference paper

Abstract

Group actions are reviewed as a tool for classifying combinatorial objects up to isomorphism. The objective is a general theory for constructing representatives of isomorphism types. Homomorphisms of group actions allow to reduce problem sizes step by step. In particular, classifying by stabilizer type, i.e. the automorphism group of the objects, is generalized to using only sufficiently large subgroups of stabilizers. So, less knowledge of the full subgroup lattice of the classifying group is needed. For single steps in the homomorphism decomposition, isomorphism problems are transformed into double coset problems in groups. New lower bounds are given for the number of long double cosets such that corresponding bounds for the number of objects with trivial automorphism group can be derived.

The theory is illustrated by an account of recent work on the construction of t-designs including new results. Based on a computer search by DISCRETA several simple 8-designs and the first simple 9-designs with small parameters are presented. The automorphism group is ASL(3, 3) acting on 27 and 28 points. There are many isomorphism types in each case. The number of isomorphism types is determined in the smaller cases. By relating the isomorphism types of design extensions to double cosets designs with small automorphism groups are also accessible. There result more than 1016 isomorphism types of 8-(28, 14, λ′) designs from each 8(27,13, λ) design. There are exactly 131,210,855,332,052,182,104 isomorphism types of 7-(25,9,45) designs obtained from extending all the 7-(24,8,5) designs with automorphism group PSL(2, 23) by all the 7-(24,9,40) designs with automorphism group PGL(2, 23). Most of these designs have a trivial automorphism group. Iterating forming extensions then results in more than 1062 isomorphism types of 7-(26,10,342) designs.

Dedicated to Professor Adalbert Kerber on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. O. Alltop: Extending t-designs. J. Comb. Theory (A) 18 (1975), 177–186.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Betten, A. Kerber, R. Laue, A. Wassermann: ES gibt 7-Designs mit kleinen Parametern! Bayreuther Math. Schr. 49 (1995), 213.

    MathSciNet  MATH  Google Scholar 

  3. A. Betten, A. Kerber, A. Kohnert, R. Laue, A. Wassermann: The discovery of simple 7-designs with automorphism group GL(2,32). Proc of AAECC 11, Springer LN in Computer Science 948 (1995), 131–145.

    MathSciNet  Google Scholar 

  4. A. Betten, R. Laue, A. Wassermann: Simple 7-Designs With Small Parameters. J.Comb. Designs 7 (1999), 79–94.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Betten, R. Laue, A. Wassermann: Some simple 7­designs. Geometry, Combinatorial Designs and Related Structures, Proceedings of the First Pythagorean Conference. J. W. P. Hirschfeld, S. S. Magliveras, M. J. de Resmini Cambridge University Press, LMS Lecture Notes 245 (1997), 15–25.

    Google Scholar 

  6. A. Betten, R. Laue, A. Wassermann: Simple 6­ and 7­designs on 19 to 33 points. Congressus Numerantium 123 (1997), 149–160.

    MathSciNet  MATH  Google Scholar 

  7. A. Betten, M. C. Klin, R. Laue, A. Wassermann: Graphical t-Designs via polynomial Kramer-Mesner matrices. Discrete Mathematics 197 /198 (1999), 83–109.

    MathSciNet  Google Scholar 

  8. A. Betten, A. Kerber, R. Laue, A. Wassermann: Simple 8­designs with small parameters. Designs, Codes and Cryptography 15 (1998), 5–27.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Betten, R. Laue, A. Wassermann: Simple 8-(40,11,1440) designs. Discrete Applied Mathematics 95 (1999), 109–114.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Betten, R. Laue, A. Wassermann: A Steiner 5-Design on 36 Points. Designs, Codes and Cryptography 17 (1999), 181–186.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Betten, S. Molodtsov, R. Laue, A. Wassermann: Steiner systems with automorphism group PSL(2,71), PSL(2,83) and PEL(2,35). J. of Geometry 67 (2000), 35–41.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Blegholdt: Computerunterstützte Berechnung von Multigraphen mittels Homomorphieprinzip. Diplomarbeit Universität Bayreuth, may 28, 1995.

    Google Scholar 

  13. N. G. De Bruijn: Pölya’s theory of counting. Applied Combinatorial Mathe-matics Beckenbach ED.) Wiley, New York, 1964.

    Google Scholar 

  14. H. Brown, L. Hjelmeland, L. Masinter: Constructive graph labeling using double cosets. Discrete Math. 7 (1974), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Burnside: Theory of groups of finite order. Dover Publ., New York, 1955, reprint of 2nd. edition 1911.

    Google Scholar 

  16. L. G. Chouinard II, J. Jajcay, S. S. Magliveras: Finite groups and designs. The CRC Handbook of Combinatorial Designs, C. J. Colbourn, J. H. ED., CRC Press 1996, 587–615.

    Google Scholar 

  17. J. H. Conway: An Algorithm for double coset enumerationt Proceedings of the London Math. Soc. Symp on Computational Group Theory (1984), ed. M. Atkinson, Academic Press, 33–37

    Google Scholar 

  18. R. H. F. Denniston: The problem of the higher values of t. Annals of Discrete Mathemtics 7 (1980), 65–70.

    Article  MathSciNet  Google Scholar 

  19. I. A. Faradzhev: Generation of nonisomorphic graphs with a given degree sequence (russian). In Algorithmic Studies in Combinatorics, Ed. Nauka, Moscow(1978), 11–19.

    Google Scholar 

  20. The Gap-Team Groups, algorithms, and programming. Version 4. Lehrstuhl D für Mathematik, RWTH Aachen, Germany and School of Mathematical and Computational Sciences, U. St. Andrews, Scotland, 1997.

    Google Scholar 

  21. T. Grüner, R. Laue, M. Meringer: Algorithms for group actions applied to graph generation. Groups and Computation II, Workshop on Groups and Computation, june7–10, 1995,113–123, L. Finkelstein, W. M. Kantor, ed., DI- MACS 28, AMS 1997.

    Google Scholar 

  22. T. Grüner, A. Kerber, R. Laue, M. Meringer Molgen 4.0. Match 37 (1998), 205–208.

    Google Scholar 

  23. R. Hager, A. Kerber, R. Laue, D. Moser, W. Weber: Construction of orbit representatives. Bayreuther Math. Sehr. 35 (1991), 157–169.

    MathSciNet  MATH  Google Scholar 

  24. P. Hall: On groups of automorphisms. J. Reine Angew. Math. 182 (1940), 194–204.

    MathSciNet  Google Scholar 

  25. B. Huppert: Endliche Gruppen I. Springer Grundlehren der mathematischen Wissenschaften Bd 134, (1967).

    Google Scholar 

  26. A. Kerber, R. Laue: Group actions, double cosets, and homomorphisms: unifying concepts for the constructive theory of discrete structures. Acta Applicanda Mathematicae 52 (1998), 63–90.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Kerber: Algebraic combinatorics via finite group actions. BI- Wissenschaftsverlag Mannheim, 1991, 2nd ed. Springer 1999.

    Google Scholar 

  28. M. H. Klin: On the number of graphs for whicha given permutation group is the automorphism group. Kibernetika 6 (1970), 131–137.

    MathSciNet  Google Scholar 

  29. E. S. Kramer, D. M. Mesner: t-designs on hypergraphs. Discrete Math. 15 (1976), 263–296.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. L. Kreher, S. P. Radziszowski: The existence of simple 6-(14,7,4) designs. J. Comb. Theor. A (1986), 237–243.

    Google Scholar 

  31. R. Laue: Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen. Bayreuther Math. Sehr. 9 (1982),309 Seiten.

    Google Scholar 

  32. R. Laue: Computing double coset representatives for the generation of solvable groups. Proceedings EUROCAM’82, Marseille 1982, Springer LN in Computer Science 144 (1982), 65–70.

    MathSciNet  Google Scholar 

  33. R. Laue, J. Neubüser, U. Schoenwaelder: Algorithms for finite soluble groups and the SOGOS system. Computational Group Theory, M. D. Atkinson ed.,Academic Press, London (1984), 105–135.

    Google Scholar 

  34. R. Laue: Abbildungen und Algorithmen. Seminaire lotharingien de combinatoire, 14e session, Burg Feuer stein, (1986), 115–132.

    Google Scholar 

  35. R. Laue: Eine konstruktive Version des Lemmas von Burnside. Bayreuther Math. Sehr. 28 (1989), 111–125.

    MathSciNet  Google Scholar 

  36. R. Laue: Konstruktionen von Gruppen, Graphen, etc. Darstellungstheorietage Mai 1992, Akademie gemeinnütziger Wissenschaften zu Erfurt. Sitzungs-berichte der Mathematisch-Naturwissenschaftlichen Klasse, Bd. 4 (1992), 53–65.

    MathSciNet  MATH  Google Scholar 

  37. R. Laue: Construction of combinatorial objects -A tutorial. Bayreuther Math. Sehr. 43 (1993), 53–96.

    MATH  Google Scholar 

  38. R. Laue: Construction of groups and the constructive approach to group actions. Symmetry and Structural Properties of Condensed Matter (Zajaczkowo 1994). T. Lulek, W. Florek, S. Walcerz ed., World Sei, Singapore (1995), 404–416.

    Google Scholar 

  39. R. Laue, S. S. Magliveras, A. Wassermann: New large sets of t-designs. To appear in J. Combinat. Designs.

    Google Scholar 

  40. M. W. Llebeck, C. E. Praeger, J. Saxl: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365–383.

    Article  MathSciNet  Google Scholar 

  41. R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, J. Lederberg: Applications of artificial intelligence for organic chemistry: The Dendral Project. McGraw-Hill, New York(1980).

    Google Scholar 

  42. S. Linton: Double coset enumeration. J. Symbolic Computation 12 (1991), 415–426.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. C. Lunn, J. K. Senior: A method of determining all the solvable groups of given order and its application to the orders 16p and 32p. Amer. J. Math. 56 (1934), 319–327.

    Article  MathSciNet  Google Scholar 

  44. B. D. Mckay: Isomorph-free exhaustive generation. J. Algorithms 26 (1998), 306–324.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Mathon: Searching for spreads and packings. Geometry, Combinatorial Designs and Related Structures, Proceedings of the First Pythagorean Conference. J. W. P. Hirschfeld, S. S. Magliveras, M. J. de Resmini eds. Cambridge University Press, LMS Lecture Notes 245 (1997), 161–176.

    Google Scholar 

  46. S. G. Molodtsov: Computer-Aided generation of molecular graphs. Commun. in Math. Chem. (Match) 30 (1994), 213–224.

    MATH  Google Scholar 

  47. G. Pólya: Kombinatorische Anzahlbestimmung für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68 (1937), 145–254.

    Article  MathSciNet  Google Scholar 

  48. R. C. Read: Everyone a winner. Ann. Discr. Math. 2 (1978), 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  49. G.-C. Rota, D. A. Smith: Enumeration under group action. Annali Scuola Normale Superiore-Pica. Classe de Scienze (4)4, (1977), 637–646.

    Google Scholar 

  50. E. Ruch, W. Hässelbarth, B. Richter: Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzahlung. Theor. Chim. Acta (Berlin) 19 (1970), 288–300.

    Article  Google Scholar 

  51. B. Schmalz: Verwendung von Untergruppenleitern zur Bestimmung von Doppelnebenklassen. Bayreuther Math. Sehr. 31 (1990), 109–143.

    MathSciNet  MATH  Google Scholar 

  52. B. Schmalz: The t-Designs with prescribed automorphism group, new simple 6-designs. J. Combinatorial Designs 1 (1993), 125–170.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. C. Slattery: Computing double cosets in soluble groups. To appear in J. Symbolic Computation 11 (1999).

    Google Scholar 

  54. P. K. Stockmeyer: Enumeration of graphs with prescribed automorphism group. Ann Arbor, 1971.

    Google Scholar 

  55. Tran Van Trung: On the construction of t-designs and the existence of some new infinite series of simple 5-designs. Arch. Math. 47 (1986), 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. C. Van Leijenhorst: Orbits on the projective line. J. Comb. Theory A 31 (1981), 146–154.

    Article  MATH  Google Scholar 

  57. A. Wassermann: Finding simple t-designs with enumeration techniques. J. Comb. Designs 6 (1998), 79–90.

    Article  MathSciNet  MATH  Google Scholar 

  58. D.E. White: Classifying patterns by automorphism group: an operator the-oretic approach. Discrete Math. 13 (1975), 277–295.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laue, R. (2001). Constructing Objects up to Isomorphism, Simple 9-Designs with Small Parameters. In: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (eds) Algebraic Combinatorics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59448-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59448-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41110-9

  • Online ISBN: 978-3-642-59448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics