Skip to main content

Evolution of the TIR, Tolls and TLRs: Functional Inferences from Computational Biology

  • Chapter
Toll-Like Receptor Family Members and Their Ligands

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 270))

Abstract

The mammalian toll-like receptors (TLRs) are products of an evolutionary process that began prior to the separation of plants and animals. The most conserved protein motif within the TLRs is the TIR, which denotes Toll, the Interleukin-l receptor, and plant disease Resistance genes. To trace the ancestry of the TLRs, it is desirable to draw upon the sequences of TIR domains from TLRs of diverse vertebrate species, including species with known dates of divergence (i.e., representatives of Mammalia and Aves) in order to establish a relationship between time and genetic divergence. It appears that a gene ancestral to modern TLRs 1 and 6 duplicated approximately 130 million years ago, only shortly before the speciation event that led to humans and mice. Though it is not represented in mice, TLR10 split from the TLR[l/6] precursor about 300 million years ago. The origins of other TLRs are more ancient, dating to the origins of vertebrate life, and some present-day vertebrate species appear to have many more TLRs than others. Moreover, the patterns of TLR expression are quite variable at the level of tissues, even among closely related species. A given TLR in species that are related by descent from a common ancestor may acquire different duties within each descendant line, so that some microbial inducers are avidly recognized in one species but not in others; likewise the intensity and the anatomic location of an innate immune response may vary considerably. In this review, we discuss the computational methods used to analyze divergence of the TIR, and the conclusions that may be safely drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-KB by Toll-like receptor 3. Nature 413: 732 - 738

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334: 1717 - 1725

    Article  PubMed  CAS  Google Scholar 

  • Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll- like receptor signaling. Proc Natl Acad Sci USA 97: 10162 - 10167

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary PM, Ferguson C, Nguyen V, Nguyen O, Massa HF, Eby M, Jasmin A, Trask BJ, Hood L, Nelson PS (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91: 4020 - 4027

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mai (MyD88- adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78 - 83

    Article  PubMed  CAS  Google Scholar 

  • Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T (2001) Molecular cloning and functional characterization of chicken toll-like receptors: a single chicken toll covers multiple molecular patterns. J Biol Chem 276: 47143 - 47149

    Article  PubMed  CAS  Google Scholar 

  • Gery I, Gershon RK, Waksman BH (1972) Potentiation of the T-lymphocyte response to mitogens. I. The responding cell. J Exp Med 136: 128 - 142

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740 - 745

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2: 835 - 841

    Article  PubMed  CAS  Google Scholar 

  • Inamori K, Koori K, Mishima C, Muta T, Kawabata S (2000) A horseshoe crab receptor structurally related to Drosophila Toll. J Endotoxin Res 6: 397 - 399

    PubMed  CAS  Google Scholar 

  • Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, Yoshikai Y (2000) Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165: 6682 - 6686

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863 - 869

    Article  PubMed  CAS  Google Scholar 

  • Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31: 3026 - 3037

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392: 917 - 920

    Article  PubMed  CAS  Google Scholar 

  • Lachman L, Hacker MP, Handschumacher RE (1977) Partial purification of human lymphocyte activating factor (LAF) by ultrafiltration and electrophoretic techniques. J Immunol 119: 2019 - 2023

    PubMed  CAS  Google Scholar 

  • Li W-H (1997) Rates and patterns of nucleotide substitution. In: Molecular Evolution. Sunderland, MA,Sinauer Associates, Inc., pp 177 - 214

    Google Scholar 

  • Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA (1986) Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124: 179 - 185

    PubMed  CAS  Google Scholar 

  • Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y (2000) Gene expressions of toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol 165: 5767 - 5772

    PubMed  CAS  Google Scholar 

  • Matsuguchi T, Takagi K, Musikacharoen T, Yoshikai Y (2000) Gene expressions of lipopolysaccharide receptors, Toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95: 1378 - 1385

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [see comments]. Nature 388: 394 - 397

    Article  PubMed  CAS  Google Scholar 

  • Musikacharoen T, Matsuguchi T, Kikuchi T, Yoshikai Y (2001) NF-K B and STAT5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression. J Immunol 166: 4516 - 4524

    PubMed  CAS  Google Scholar 

  • Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton- Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164: 5998 - 6004

    PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg MA, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085 - 2088

    Article  PubMed  CAS  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D, Lipopolysaccharide, Inflammation, Positional c, Salmonella, Mice (1999) Endotoxin-tolerant mice have mutations in toll¬like receptor 4 (Tlr4). J Exp Med 189: 615 - 625

    Article  PubMed  CAS  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 189: 1519 - 1520

    Article  Google Scholar 

  • Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B (2000) PU.l and interferon consensus sequence binding protein (ICSBP) regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 275: 9773 - 9781

    Article  PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95: 588 - 593

    Article  PubMed  CAS  Google Scholar 

  • Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Toll-like Receptors in human monocytes and dendritic cells. J Immunol 166: 249 - 255

    PubMed  CAS  Google Scholar 

  • Wang T, Lafuse WP, Zwilling BS (2000) Regulation of toll-like receptor 2 expression by macrophages following Mycobacterium avium infection. J Immunol 165: 6308 - 6313

    PubMed  CAS  Google Scholar 

  • Wang T, Lafuse WP, Zwilling BS (2001) NF-KB and Spl elements are necessary for maximal transcription of Toll-like receptor 2 induced by Mycobacterium avium. J Immunol 167: 6924 - 6932

    PubMed  CAS  Google Scholar 

  • Yang R-B, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284 – 288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beutler, B., Rehli, M. (2002). Evolution of the TIR, Tolls and TLRs: Functional Inferences from Computational Biology. In: Beutler, B., Wagner, H. (eds) Toll-Like Receptor Family Members and Their Ligands. Current Topics in Microbiology and Immunology, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59430-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59430-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63975-3

  • Online ISBN: 978-3-642-59430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics