Skip to main content

Subversion of Host Defense Mechanisms by Adenoviruses

  • Chapter
Viral Proteins Counteracting Host Defenses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 269))

Abstract

Adenoviruses (Ads) cause acute and persistent infections. Alike the much more complex herpesviruses, Ads encode numerous immunomodulatory functions. About a third of the viral genome is devoted to counteract both the innate and the adaptive antiviral immune response. Immediately upon infection, E1A blocks interferon-induced gene expression and the VA-RNA inhibits interferon-induced PKR activity. At the same time, E1A reprograms the cell for DNA synthesis and induces the intrinsic cellular apoptosis program that is interrupted by E1B/19K and E1B/55K proteins, the latter inhibits p53-mediated apoptosis. Most other viral stealth functions are encoded by a separate transcription units, E3. Several E3 products prevent death receptor-mediated apoptosis. E3/14.7K seems to interfere with the cytolytic and pro-inflammatory activities of TNF while E3/10.4K and 14.5K proteins remove Fas and TRAIL receptors from the cell surface by inducing their degradation in lysosomes. These and other functions that may afect granule-mediated cell death might drastically limit lysis by NK cells and cytotoxic T cells (CTL). Moreover, Ads interfere with recognition of infected cell by CTL. The paradigmatic E3/19K protein subverts antigen presentation by MHC class I molecules by inhibiting their transport to the cell surface. In concert, these viral countermeasures ensure prolonged survival in the infected host and, as a consequence, facilitate transmission. Elucidating the molecular mechanisms of Ad-mediated immune evasion has stimulated corresponding research on other viruses. This knowledge will also be instrumental for designing better vectors for gene therapy and vaccination, and may lead to a more rational treatment of life-threatening Ad infections, e.g. in transplantation patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson KP, Fennie EH (1987) Adenovirus early region 1A modulation of interferon antiviral activity. J Virol 61:787–795

    PubMed  CAS  Google Scholar 

  • Andersson M, Pääbo S, Nilsson T, Peterson PA (1985) Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43:215–222

    PubMed  CAS  Google Scholar 

  • Andrade F, Bull HG, Thornberry NA, Ketner GW, Casciola-Rosen LA, Rosen A (2001) Adenovirus L4–100K assembly protein is a granzyme B substrate that potently inhibits granzyme B-mediated cell death. Immunity 14:751–761

    PubMed  CAS  Google Scholar 

  • Arany Z, Newsome D, Oldread E, Livingston D, Eckner R (1995) A family of transcriptional adaptor proteins targeted by the El A oncoprotein. Nature 374:81–84

    PubMed  CAS  Google Scholar 

  • Ashcroft M, Vousden KH (1999) Regulation of p53 stability. Oncogene 18:7637–7643

    PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  • Basler CF, Droguett G, Horwitz MS (1996) Sequence of the immunoregulatory early region-3 and flanking sequences of adenovirus type-35. Gene 170:249–254

    PubMed  CAS  Google Scholar 

  • Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    PubMed  CAS  Google Scholar 

  • Beard CW, Spindler KR (1995) Characterization of an 1 IK protein produced by early region 3 of mouse adenovirus type 1. Virology 208:457–466

    PubMed  CAS  Google Scholar 

  • Benedict CA, Norris PS, Prigozy TI, Bodmer J-L, Mahr JA, Garnett CT, Martinon F, Tschopp J, Gooding LR, Ware CF (2001) Three adenovirus E3 proteins cooperate to evade apoptosis by TRAIL receptor-1 and 2. J Biol Chem 276:3270–3278

    PubMed  CAS  Google Scholar 

  • Bennett EM, Bennink JR, Yewdell JW, Brodsky FM (1999) Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J Immunol 162:5049–5052

    PubMed  CAS  Google Scholar 

  • Bergelson J, Cunningham J, Droguett G, Kurt-Jones E, Krithivas A, Hong J, Horwitz M, Crowell R, Finberg R (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    PubMed  CAS  Google Scholar 

  • Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D’Andrea A, Livingston DM (1996) Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383:344–347

    PubMed  CAS  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    PubMed  CAS  Google Scholar 

  • Blair GE, Hall KT (1998) Human adenoviruses: Evading detection by cytotoxic T lymphocytes. Semin Virol 8:387–397

    CAS  Google Scholar 

  • Borgland S, Bowen G, Wong N, Libermann T, Muruve D (2000) Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-KB. J Virol 74:3941–3947

    CAS  Google Scholar 

  • Bosse D, Ades E (1991) Studies of adenovirus subtypes and down-regulation of HLA class I expression: correlations to natural-killer-mediated cytolysis. Pathobiology 59:313–315

    PubMed  CAS  Google Scholar 

  • Boulakia C, Chen G, Ng F, Teodoro J, Branton P, Nicholson D, Poirier G, Shore G (1996) Bcl-2 and adenovirus E1B 19kDa protein prevent ElA-induced processing of CPP32 and cleavage of poly (ADP-ribose) polymerase. Oncogene 12:529–535

    PubMed  CAS  Google Scholar 

  • Boyd J, Malstrom S, Subramanian T, Venkatesh L, Schaeper U, Elangovan B, D’Sa-Eipper C, Chinnadurai G (1994) Adenovirus E1B 19kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79:341–351

    PubMed  CAS  Google Scholar 

  • Bruder JT, Jie T, McVey DL, Kovesdi I (1997) Expression of gpl9K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver. J Virol 71:7623–7628

    PubMed  CAS  Google Scholar 

  • Bruder JT, Kovesdi I (1997) Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 71:398–404

    PubMed  CAS  Google Scholar 

  • Burgert H-G (1996) Subversion of the MHC class I antigen presentation pathway by adenoviruses and herpes simplex viruses. Trends Microbiol 4:107–112

    PubMed  CAS  Google Scholar 

  • Burgert H-G, Blusch J (2000) Immunomodulatory functions encoded by the E3 transcription unit of adenoviruses. Virus Genes 21:13–25

    PubMed  CAS  Google Scholar 

  • Burgert H-G, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–997

    PubMed  CAS  Google Scholar 

  • Burgert H-G, Kvist S (1987) The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J 6:2019–2026

    PubMed  CAS  Google Scholar 

  • Burgert H-G, Maryanski JL, Kvist S (1987) “E3/19K” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 84:1356–1360

    PubMed  CAS  Google Scholar 

  • Carlin CR, Tollefson AE, Brady HA, Hoffman BL, Wold WS (1989) Epidermal growth factor receptor is down-regulated by a 10,400 MW protein encoded by the E3 region of adenovirus. Cell 57: 135–144

    PubMed  CAS  Google Scholar 

  • Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-KB pathway. Immunity 7:821–830

    PubMed  CAS  Google Scholar 

  • Chen MJ, Holskin B, Strickler J, Gorniak J, Clark MA, Johnson PJ, Mitcho M, Shalloway D (1987) Induction by El A oncogene expression of cellular susceptibility to lysis by TNF. Nature 330:581–583

    PubMed  CAS  Google Scholar 

  • Chen P, Tian J, Kovesdi I, Bruder JT (1998) Interaction of the adenovirus 14.7-kDa protein with FLICE inhibits Fas ligand-induced apoptosis. J Biol Chem 273:5815–5820

    PubMed  CAS  Google Scholar 

  • Chen PH, Ornelles DA, Shenk T (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol 67:3507–3514

    PubMed  CAS  Google Scholar 

  • Chinnadurai G (1998) Control of apoptosis by human adenovirus genes. Sem Virol 8:399–408

    CAS  Google Scholar 

  • Chiou SK, White E (1997) p300 binding by El A cosegregates with p53 induction but is dispensable for apoptosis. J Virol 71:3515–3525

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Bieber F, Jacrot B (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186:280–285

    PubMed  CAS  Google Scholar 

  • Clarke P, Meintzer SM, Gibson S. Widmann C, Garrington TP, Johnson GL, Tyler KL (2000) Reovirus-induced apoptosis is mediated by TRAIL. J Virol 74:8135–8139

    PubMed  CAS  Google Scholar 

  • Clesham G, Adam P, Proudfoot D, Flynn P, Efstathiou S, Weissberg P (1998) High adenoviral loads stimulate NFicB-dependent gene expression in human vascular smooth muscle cells. Gene Ther 5:174–180

    PubMed  CAS  Google Scholar 

  • Colonna M, Nakajima H, Cella M (2000) A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells. Semin Immunol 12:121 127

    PubMed  CAS  Google Scholar 

  • Cook J, Potter T, Bellgrau D, Routes B (1996) El A oncogene expression in target cells induces cytolytic susceptibility at a post-recognition stage in the interaction with killer lymphocytes. Oncogene 13:833–842

    PubMed  CAS  Google Scholar 

  • Cook JL, Routes BA, Leu CY, Walker TA, Colvin KL (1999) E1A oncogene-induced cellular sensitization to immune-mediated apoptosis is independent of p53 and resistant to blockade by E1B 19kDa protein. Exp Cell Res 252:199–210

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2000) Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci USA 97:8051–8056

    PubMed  CAS  Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    PubMed  CAS  Google Scholar 

  • Cox JH, Yewdell JW, Eisenlohr LC, Johnson PR, Bennink JR (1990) Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum. Science 247:715–718

    PubMed  CAS  Google Scholar 

  • Cress W, Nevins J (1996) Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 208:63–78

    PubMed  CAS  Google Scholar 

  • Davison AJ, Telford EA, Watson MS, McBride K, Mautner V (1993) The DNA sequence of adenovirus type 40. J Mol Biol 234:1308–1316

    PubMed  CAS  Google Scholar 

  • Degli-Esposti M (1999) To die or not to die — the quest of the TRAIL receptors. J Leukoc Biol 65:535–542

    PubMed  CAS  Google Scholar 

  • De Jong JC, Wermenbol AG, Verweij-Uijterwaal MW, Slaterus KW, Wertheim-Van Dillen P, Van Doornum GJ, Khoo SH, Hierholzer JC (1999) Adenoviruses from human immunodeficiency virus-infected individuals, including two strains that represent new candidate serotypes Ad50 and Ad51 of species B1 and D, respectively. J Clin Microbiol 37:3940–3945

    PubMed  Google Scholar 

  • Deryckere F, Burgert H-G (1996a) Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgenera B and C. J Virol 70:2832–2841

    PubMed  CAS  Google Scholar 

  • Deryckere F, Burgert H-G (1996b) Tumor necrosis factor alpha induces the adenovirus early 3 promoter by activation of NF-KB. J Biol Chem 271:30249–30255

    PubMed  CAS  Google Scholar 

  • Deryckere F, Ebenau-Jehle C, Wold WSM, Burgert H-G (1995) Tumor necrosis factor a increases expression of adenovirus E3 proteins. Immunobiol 193:186–192

    CAS  Google Scholar 

  • Desagher S, Martinou J (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    PubMed  CAS  Google Scholar 

  • Desbarats J, Wade T, Wade WF, Newell MK (1999) Dichotomy between naive and memory CD4(+) T cell responses to Fas engagement. Proc Natl Acad Sci USA 96:8104–8109

    PubMed  CAS  Google Scholar 

  • Dimitrov T, Krajcsi P, Hermiston TW, Tollefson AE, Hannink M, Wold WS (1997) Adenovirus E3–10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J Virol 71:2830–2837

    PubMed  CAS  Google Scholar 

  • Donze O, Dostie J, Sonenberg N (1999) Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and Fas receptor expression. Virology 256:322–329

    PubMed  CAS  Google Scholar 

  • Dragulev BP, Sira S, Abouhaidar MG, Campbell JB (1991) Sequence analysis of putative E3 and fiber genomic regions of two strains of canine adenovirus type 1. Virology 183:298–305

    PubMed  CAS  Google Scholar 

  • Duerksen-Hughes P, Wold W, Gooding L (1989) Adenovirus El A renders infected cells sensitive to cytolysis by tumor necrosis factor. J Immunol 143:4193–1200

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    PubMed  CAS  Google Scholar 

  • Efrat S, Fejer G, Brownlee M, Horwitz MS (1995) Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 92:6947–6951

    PubMed  CAS  Google Scholar 

  • Elsing A, Burgert H-G (1998) The adenovirus E3/10.4K-14.5K proteins down-modulate the apoptosis receptor Fas/Apo-1 by inducing its internalization. Proc Natl Acad Sci USA 95:10072–10077

    PubMed  CAS  Google Scholar 

  • Fejer G, Gyory I, Tufariello J, Horwitz MS (1994) Characterization of transgenic mice containing adenovirus early region 3 genomic DNA. J Virol 68:5871–5881

    PubMed  CAS  Google Scholar 

  • Feuerbach D, Burgert H-G (1993) Novel proteins associated with MHC class I antigens in cells expressing the adenovirus protein E3/19K. EMBO J 12:3153–3161

    PubMed  CAS  Google Scholar 

  • Feuerbach D, Etteldorf S, Ebenau-Jehle C, Abastado JP, Madden D, Burgert H-G (1994) Identification of amino acids within the MHC molecule important for the interaction with the adenovirus protein E3/19K. J Immunol 153:1626–1636

    PubMed  CAS  Google Scholar 

  • Fletcher JM, Prentice HG, Grundy JE (1998) Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J Immunol 161:2365–2374

    PubMed  CAS  Google Scholar 

  • Flomenberg P, Gutierrez E, Hogan KT (1994) Identification of class I MHC regions which bind to the adenovirus E3–19k protein. Mol Immunol 31:1277–1284

    PubMed  CAS  Google Scholar 

  • Flomenberg P, Piaskowski V, Truitt RL, Casper JT (1996) Human adenovirus-specific CD8+ T-cell responses are not inhibited by E3–19K in the presence of gamma interferon. J Virol 70:6314–6322

    PubMed  CAS  Google Scholar 

  • Fox JP, Hall CE, Cooney MK (1977) The Seattle virus watch. VII Observations of adenovirus infections. Am J Epidemiol 105:362–386

    PubMed  CAS  Google Scholar 

  • Gabathuler R, Kvist S (1990) The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type 2 consists of three separate amino acid segments at the carboxy terminus. J Cell Biol 111:1803–1810

    PubMed  CAS  Google Scholar 

  • Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC (2001) Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA 98:6794–6799

    PubMed  CAS  Google Scholar 

  • Gil J, Esteban M (2000) The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-α receptors. Oncogene 19:3665–3674

    PubMed  CAS  Google Scholar 

  • Ginsberg HS, Lundholm Beauchamp U, Horswood RL, Pernis B, Wold WS, Chanock RM, Prince G A (1989) Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 86:3823–3827

    PubMed  CAS  Google Scholar 

  • Ginsberg HS, Moldawer LL, Sehgal PB, Redington M, Kilian PL, Chanock RM. Prince GA (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88:1651–1655

    CAS  Google Scholar 

  • Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364

    PubMed  CAS  Google Scholar 

  • Gooding LR, Aquino L, Duerksen Hughes PJ, Day D, Horton TM, Yei SP, Wold WS (1991a) The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J Virol 65:3083 3094

    PubMed  CAS  Google Scholar 

  • Gooding LR, Elmore LW, Tollefson AE. Brady HA, Wold WS (1988) A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53:341–346

    PubMed  CAS  Google Scholar 

  • Gooding LR, Ranheim TS, Tollefson AE, Aquino L, Duerksen-Hughes PJ, Horton TM, Wold WSM (1991b) The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol 65:4114–4123

    PubMed  CAS  Google Scholar 

  • Greber U, Suomalainen M, Stidwill R, Boucke K, Ebersold M, Helenius A (1997) The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 16:5998–6007

    PubMed  CAS  Google Scholar 

  • Hale T, Braithwaite A (1999) The adenovirus oncoprotein Ela stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene. J Biol Chem 274:23777–23786

    PubMed  CAS  Google Scholar 

  • Harty JT, Tvinnereim AR, White DW (2000) CD8 + T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Ishii A, Yonehara S (1991) The Elb oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol 3:343–351

    PubMed  CAS  Google Scholar 

  • Hatada EN, Krappmann D, Scheidereit C (2000) NF-KB and the innate immune response. Curr Opin Immunol 12:52–58

    PubMed  CAS  Google Scholar 

  • Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197

    PubMed  CAS  Google Scholar 

  • Herissé J, Courtois G, Galibert F (1980) Nucleotide sequence of the EcoRI D fragment of adenovirus 2 genome. Nucleic Acids Res 8:2173–2192

    PubMed  Google Scholar 

  • Herissé J, Galibert F (1981) Nucleotide sequence of the EcoRI E fragment of adenovirus 2 genome. Nucleic Acids Res 9:1229–1240

    PubMed  Google Scholar 

  • Hermiston TW, Hellwig R, Hierholzer JC, Wold WS (1993) Sequence and functional analysis of the human adenovirus type 7 E3-gpl9K protein from 17 clinical isolates. Virology 197:593–600

    PubMed  CAS  Google Scholar 

  • Hoffman P, Carlin C (1994) Adenovirus E3 protein causes constitutively internalized epidermal growth factor receptors to accumulate in a prelysosomal compartment, resulting in enhanced degradation. Mol Cell Biol 14:3695–3706

    PubMed  CAS  Google Scholar 

  • Hong JS, Mullis KG, Engler J A (1988) Characterization of the early region 3 and fiber genes of Ad7. Virology 167:545–553

    PubMed  CAS  Google Scholar 

  • Horton TM, Ranheim TS, Aquino L, Kusher DI, Saha SK, Ware CF, Wold WS, Gooding LR (1991) Adenovirus E3 14.7K protein functions in the absence of other adenovirus proteins to protect transfected cells from tumor necrosis factor cvtolvsis. J Virol 65:2629–2639

    PubMed  CAS  Google Scholar 

  • Horton TM, Tollefson AE, Wold WS, Gooding LR (1990) A protein serologically and functionally related to the group C E3 14,700-kilodalton protein is found in multiple adenovirus serotypes. J Virol 64:1250–1255

    PubMed  CAS  Google Scholar 

  • Horvath J, Palkonyay L, Weber J (1986) Group C adenovirus DNA sequences in human lymphoid cells. J Virol 59:189–192

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1996) In: Fields BN, Knipe DM, Howley PM (eds) Adenoviruses. Lippincott-Raven Publishers, Philadelphia, New York, pp 2149–2171

    Google Scholar 

  • Horwitz MS (2001) Adenovirus immunoregulatory genes and their cellular targets. Virology 279:1–8

    PubMed  CAS  Google Scholar 

  • Huang DC, Cory S, Strasser A (1997) Bcl-2, Bcl-XL and adenovirus protein ElB19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 14:405–414

    PubMed  CAS  Google Scholar 

  • Imperiale MJ, Akusjärvi G, Leppard KN (1995) Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 199/II:139–171

    PubMed  CAS  Google Scholar 

  • Ishido S, Wang C, Lee BS, Cohen GB, Jung JU (2000) Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74:5300–5309

    PubMed  CAS  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    PubMed  CAS  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol 121:317–333

    PubMed  CAS  Google Scholar 

  • Johnsen AC, Haux J, Steinkjer B, Nonstad U, Egeberg K, Sundan A, Ashkenazi A, Espevik T (1999) Regulation of APO-2 ligand/trail expression in NK cells-involvement in NK cell-mediated cytotoxicity. Cytokine 11:664–672

    PubMed  CAS  Google Scholar 

  • Jones N (1995) Transcriptional modulation by the adenovirus El A gene. Curr Top Microbiol Immunol 199 (Pt 3):59–80

    PubMed  CAS  Google Scholar 

  • Juang Y, Lowther W, Kellum M, Au WC, Lin R, Hiscott J, Pitha PM (1998) Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sei USA 95:9837–9842

    CAS  Google Scholar 

  • Kaplan JM, Armentano D, Scaria A, Woodworth LA, Pennington SE, Wadsworth SC, Smith AE, Gregory RJ (1999) Novel role for E4 region genes in protection of adenovirus vectors from lysis by cytotoxic T lymphocytes. J Virol 73:4489–4492

    PubMed  CAS  Google Scholar 

  • Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL (1999) Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol 163:5358–5366

    PubMed  CAS  Google Scholar 

  • Kasof G, Goyal L, White E (1999) Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol 19:4390–4404

    PubMed  CAS  Google Scholar 

  • Kayagaki N, Yamaguchi N, Nakayama M, Kawasaki A, Akiba H, Okumura K, Yagita H (1999) Involvement of TNF-related apoptosis-inducing ligand in human CD4 + T cell-mediated cytotoxicity. J Immunol 162:2639–2647

    PubMed  CAS  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-KB signal. Immunity 8:297–303

    PubMed  CAS  Google Scholar 

  • Kemp MC, Hierholzer JC, Cabradilla CP, Obijeski JF (1983) The changing etiology of epidemic keratoconjunctivitis: antigenic and restriction enzyme analyses of adenovirus types 19 and 37 isolated over a 10-year period. J Infect Dis 148:24–33

    PubMed  CAS  Google Scholar 

  • Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15:705–732

    PubMed  CAS  Google Scholar 

  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-cdependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    PubMed  CAS  Google Scholar 

  • Kitajewski J, Schneider R, Safer B, Munemitsu S, Samuel C, Thimmappaya B, Shenk T (1986) Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell 45:195–200

    PubMed  CAS  Google Scholar 

  • Körner H, Burgert H-G (1994) Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J Virol 68:1442–1448

    PubMed  Google Scholar 

  • Körner H, Fritzsche U, Burgert H-G (1992) Tumor necrosis factor alpha stimulates expression of adenovirus early region 3 proteins: implications for viral persistence. Proc Natl Acad Sei USA 89:11857–11861

    Google Scholar 

  • Kos FJ, Engleman EG (1996) Immune regulation: a critical link between NK cells and CTLs. Immunol Today 17:174–176

    PubMed  CAS  Google Scholar 

  • Krajcsi P, Dimitrov T, Hermiston TW, Tollefson AE, Ranheim TS, Vande Pol SB, Stephenson AH, Wold WS (1996) The adenovirus E3–14.7K protein and the E3–10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J Virol 70:4904–4913

    PubMed  CAS  Google Scholar 

  • Krajcsi P, Wold WS (1992) The adenovirus E3–14.5K protein which is required for prevention of TNF cytolysis and for down-regulation of the EGF receptor contains phosphoserine. Virology 187:492–498

    PubMed  CAS  Google Scholar 

  • Kratzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber R (2000) The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 17:850–857

    Google Scholar 

  • Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 140:637–645

    PubMed  CAS  Google Scholar 

  • Lee MG, Abina MA, Haddada H, Perricaudet M (1995) The constitutive expression of the immunomodulatory gpl9k protein in El(-), E3(-) adenoviral vectors strongly reduces the host cytotoxic T-cell response against the vector. Gene Ther 2:256–262

    PubMed  CAS  Google Scholar 

  • Leonard G, Sen G (1996) Effects of adenovirus El A protein on interferon-signaling. Virology 224:25–33

    PubMed  CAS  Google Scholar 

  • Leonard GT, Sen GC (1997) Restoration of interferon responses of adenovirus ElA-expressing HT1080 cell lines by overexpression of p48 protein. J Virol 71:5095–5101

    Google Scholar 

  • Li Y, Kang J, Friedman J, Tarassishin L, Ye J, Kovalenko A, Wallach D, Horwitz MS (1999) Identification of a cell protein (FIP-3) as a modulator of NF-KB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis. Proc Natl Acad Sci USA 96:1042–1047

    PubMed  CAS  Google Scholar 

  • Li Y, Kang J, Horwitz MS (1997) Interaction of an adenovirus 14.7-kilodalton protein inhibitor of tumor necrosis factor alpha cytolysis with a new member of the GTPase superfamily of signal transducers. J Virol 71:1576–1582

    PubMed  CAS  Google Scholar 

  • Li Y, Kang J, Horwitz MS (1998) Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor oc-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 18:1601–1610

    PubMed  CAS  Google Scholar 

  • Lieber A, He C, Meuse L, Himeda C, Wilson C, Kay M (1998) Inhibition of NF-KB activation in combination with bcl-2 expression allows for persistence of first-generation adenovirus vectors in the mouse liver. J Virol 72:9267–9277

    PubMed  CAS  Google Scholar 

  • Lobigs M, Chelvanayagam G, Mullbacher A (2000) Proteolytic processing of peptides in the lumen of the endoplasmic reticulum for antigen presentation by major histocompatibility class I. Eur J Immunol 30:1496–1506

    PubMed  CAS  Google Scholar 

  • Look D, Roswit W, Frick A, Gris-Alevy Y, Dickhaus D, Walter M, Holtzman M (1998) Direct suppression of Statl function during adenoviral infection. Immunity 9:871–880

    PubMed  CAS  Google Scholar 

  • Ma Y, Mathews MB (1996) Structure, function, and evolution of adenovirus-associated RNA: a phy-logenetic approach. J Virol 70:5083–5099

    PubMed  CAS  Google Scholar 

  • Mahr JA, Gooding LR (1999) Immune evasion by adenoviruses. Immunol Rev 168:121–130

    PubMed  CAS  Google Scholar 

  • Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G, Branton PE (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 72:7144–7153

    PubMed  CAS  Google Scholar 

  • Marks MS, Ohno H, Kirchhausen T, Bonifacino JS (1997) Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 7:124–128

    PubMed  CAS  Google Scholar 

  • Martin M, Berk A (1999) Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol Cell Biol 19:3403–3414

    PubMed  CAS  Google Scholar 

  • Matsuse T, Hayashi S, Kuwano K, Keunecke H, JefTeries WA, Hogg JC (1992) Latent adenoviral infection in the pathogenesis of chronic airways obstruction. Am Rev Respir Dis 146:177–184

    PubMed  CAS  Google Scholar 

  • Mei YF, Wadell G (1992) The nucleotide sequence of adenovirus type 11 early 3 region: comparison of genome type Ad11p and Ad 11a. Virology 191:125–133

    PubMed  CAS  Google Scholar 

  • Moretta A, Biassoni R, Bottino C, Moretta L (2000) Surface receptors delivering opposite signals regulate the function of human NK cells. Semin Immunol 12:129–138

    PubMed  CAS  Google Scholar 

  • Moriishi K, Huang DC, Cory S, Adams JM (1999) Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc Natl Acad Sci USA 96:9683–9688

    PubMed  CAS  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    PubMed  CAS  Google Scholar 

  • Nemerow GR (2000) Cell receptors involved in adenovirus entry. Virology 274:1–4

    PubMed  CAS  Google Scholar 

  • Nemerow GR, Stewart PL (1999) Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 63:725–734

    PubMed  CAS  Google Scholar 

  • Neumann R, Genersch E, Eggers HJ (1987) Detection of adenovirus nucleic acid sequences in human tonsils in the absence of infectious virus. Virus Res 7:93–97

    PubMed  CAS  Google Scholar 

  • Ng F, Nguyen M, Kwan T, Branton P, Nicholson D, Cromlish J, Shore G (1997) p28 Bap31, a Bcl-2/Bcl-XL and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139:327–338

    PubMed  CAS  Google Scholar 

  • Nguyen M, Branton P, Roy S, Nicholson D, Alnemri E, Yeh W, Mak T, Shore G (1998) ElA-induced processing of procaspase-8 can occur independently of FADD and is inhibited by Bcl-2. J Biol Chem 273:33099–33102

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    PubMed  CAS  Google Scholar 

  • O’Brien V (1998) Viruses and apoptosis. J Gen Virol 79:1833–1845

    PubMed  Google Scholar 

  • Pääbo S, Nilsson T, Peterson PA (1986a) Adenoviruses of subgenera B, C, D, and E modulate cell-surface expression of major histocompatibility complex class I antigens. Proc Natl Acad Sci USA 83: 9665–9669

    PubMed  Google Scholar 

  • Pääbo S, Weber F, Nilsson T, Schaffner W, Peterson PA (1986b) Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein. EMBO J 5:1921–1927

    PubMed  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    PubMed  CAS  Google Scholar 

  • Perez D, White E (1998) E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J Biol Chem 141:1255–1266

    CAS  Google Scholar 

  • Perez D, White E (2000) TNF-α signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K. Mol Cell 6:53–63

    PubMed  CAS  Google Scholar 

  • Philipson L (1984) In: Ginsberg HS (ed) Adenovirus Assembly. Plenum Press, New York, pp 309–337

    Google Scholar 

  • Ranheim TS, Shisler J, Horton TM, Wold LJ, Gooding LR, Wold WS (1993) Characterization of mutants within the gene for the adenovirus E3 14.7-kilodalton protein which prevents cytolysis by tumor necrosis factor. J Virol 67:2159–2167

    PubMed  CAS  Google Scholar 

  • Rao L, Modha D, White E (1997) The E1B 19K protein associates with lamins in vivo and its proper localization is required for inhibition of apoptosis. Oncogene 15:1587–1597

    PubMed  CAS  Google Scholar 

  • Raska KJ, Gallimore PH (1982) An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells. Virology 123:8–18

    PubMed  Google Scholar 

  • Reich N, Pine R, Levy D, Darnell JJ (1988) Transcription of interferon-stimulated genes is induced by adenovirus particles but is suppressed by El A gene products. J Virol 62:114–119

    PubMed  CAS  Google Scholar 

  • Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–778

    PubMed  CAS  Google Scholar 

  • Roelvink PW, Lizonova A, Lee JGM, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a Cellular attachment protein for adenovirus serotypes from subgenera A, C, D, E, and F. J Virol 72: 7909–7915

    PubMed  CAS  Google Scholar 

  • Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571

    PubMed  CAS  Google Scholar 

  • Routes J, Ryan S, Clase A, Miura T, Kuhl A, Potter T, Cook J (2000) Adenovirus El A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand. J Immunol 165:4522–4527

    PubMed  CAS  Google Scholar 

  • Routes JM, Cook JL (1995) El A gene expression induces susceptibility to killing by NK cells following immortalization but not adenovirus infection of human cells. Virology 210:421–428

    PubMed  CAS  Google Scholar 

  • Rowe WP, Huebner RJ, Gillmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84:570

    PubMed  CAS  Google Scholar 

  • Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    PubMed  CAS  Google Scholar 

  • Sandoval IV, Bakke O (1994) Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol 4:292–297

    PubMed  CAS  Google Scholar 

  • Schmitz M, Indorf A, Limbourg F, Stadtler H, Traenckner E, Baeuerle P (1996) The dual effect of adenovirus type 5 El A 13 S protein on NF-kappaB activation is antagonized by E1B 19K. Mol Cell Biol 16:4052–4063

    PubMed  CAS  Google Scholar 

  • Schouten GJ, van der Eb AJ, Zantema A (1995) Downregulation of MHC class I expression due to interference with pl05-NF kappa B1 processing by Adl2El A. EMBO J 14:1498–1507

    PubMed  CAS  Google Scholar 

  • Schowalter DB, Tubb JC, Liu M, Wilson CB, Kay MA (1997) Heterologous expression of adenovirus E3-gpl9K in an Ela-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo. Gene Ther 4:351–360

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    PubMed  CAS  Google Scholar 

  • Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D, Wiley SR (1999) IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 163:920–926

    PubMed  CAS  Google Scholar 

  • Sester M, Burgert H-G (1994) Conserved cysteine residues within the E3/19K protein of adenovirus type 2 are essential for binding to major histocompatibility complex antigens. J Virol 68:5423–5432

    PubMed  CAS  Google Scholar 

  • Sester M, Feuerbach D, Frank R, Preckel T, Gutermann A, Burgert H-G (2000) The amyloid precursorlike protein 2 associates with the major histocompatibility complex class i molecule Kd. J Biol Chem 275:3645–3654

    PubMed  CAS  Google Scholar 

  • Shao R, Hu M, Zhou B, Lin S, Chiao P, von Lindern R, Spohn B, Hung M (1999) E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IKB kinases and nuclear factor kB activities. J Biol Chem 274:21495–21498

    PubMed  CAS  Google Scholar 

  • Shenk T (1996) In: Fields BN, Knipe DM, Howley PM (eds), Adenoviridae: the Viruses and their replication. Lippincott-Raven Publishers, Philadelphia, New York, pp 2111–2148

    Google Scholar 

  • Shisler J, Duerksen-Hughes P, Hermiston T, Wold W, Gooding L (1996) Induction of susceptibility to tumor necrosis factor by El A is dependent on binding to either p300 or pl05-Rb and induction of DNA synthesis. J Virol 70:68–77

    PubMed  CAS  Google Scholar 

  • Shisler J, Yang C, Walter B, Ware CF, Gooding LR (1997) The adenovirus E3–10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 71: 8299–8306

    PubMed  CAS  Google Scholar 

  • Signäs C, Akusjärvi G, Pettersson U (1986) Region E3 of human adenoviruses; differences between the oncogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene 50:173–184

    PubMed  Google Scholar 

  • Spiliotis ET, Osorio M, Zuniga MC, Edidin M (2000) Selective export of MHC class I molecules from the ER after their dissociation from TAP. Immunity 13:841–851

    PubMed  CAS  Google Scholar 

  • Sprengel J, Schmitz B, Heuss Neitzel D, Zock C, Doerfler W (1994) Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol 68:379–389

    PubMed  CAS  Google Scholar 

  • Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH, Walczak H (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    PubMed  CAS  Google Scholar 

  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    PubMed  CAS  Google Scholar 

  • Stevenson PG, Efstathiou S, Doherty PC, Lehner PJ (2000) Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sei USA 97:8455–8460

    CAS  Google Scholar 

  • Stewart AR, Tollefson AE, Krajcsi P, Yei SP, Wold WS (1995) The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane. J Virol 69:172–181

    PubMed  CAS  Google Scholar 

  • Straus SE (1984) In: Ginsberg HS (ed) Adenovirus infections in humans. Plenum Press, New York and London, pp 451–496

    Google Scholar 

  • Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annu Rev Cell Dev Biol 12:27–54

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71:1739–1746

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Shore GC, Branton PE (1995) Adenovirus El A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11:467–474

    PubMed  CAS  Google Scholar 

  • Thomas A, White E (1998) Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev 12:1975–1985

    PubMed  CAS  Google Scholar 

  • Thorne TE, Voelkel Johnson C, Casey WM, Parks LW, Laster SM (1996) The activity of cytosolic phospholipase A2 is required for the lysis of adenovirus-infected cells by tumor necrosis factor. J Virol 70:8502–8507

    PubMed  CAS  Google Scholar 

  • Tollefson AE, Hermiston TW, Lichtenstein DL, Colle CF, Tripp RA, Dimitrov T, Toth K, Wells CE, Doherty PC, Wold WS (1998) Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature 392:726–730

    PubMed  CAS  Google Scholar 

  • Tollefson AE, Scaria A, Hermiston T, Ryerse JS, Wold LJ, Wold WSM (1996) The adenovirus death protein (E3–11.6K) is required at very late stages of infection for efficient cell-lysis and release of adenovirus from infected-cells. J Virol 70:2296–2306

    PubMed  CAS  Google Scholar 

  • Tollefson AE, Stewart AR, Yei SP, Saha SK, Wold WS (1991) The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J Virol 65:3095–3105

    PubMed  CAS  Google Scholar 

  • Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sei USA 94: 3352–3356

    CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    PubMed  CAS  Google Scholar 

  • Trapani JA, Davis J, Sutton VR, Smyth MJ (2000) Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 12:323–329

    PubMed  CAS  Google Scholar 

  • Tufariello J, Cho S, Horwitz MS (1994) The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J Virol 68:453–462

    PubMed  CAS  Google Scholar 

  • Turnell A, Grand R, Gorbea C, Zhang X, Wang W, Mymryk J, Gallimore P (2000) Regulation of the 26 S proteasome by adenovirus E1A. EMBO J 19:4759–1773

    PubMed  CAS  Google Scholar 

  • van Endert PM (1999) Genes regulating MHC class I processing of antigen. Curr Opin Immunol 11:82–88

    PubMed  Google Scholar 

  • Vandenabeele P, Declercq W, Beyart R, Fiers W (1995) Two tumour necrosis factor receptors: structure and function. Trends Cell Biol 5:392–399

    PubMed  CAS  Google Scholar 

  • Vidalain P-O, Azocar O, Lamouille B, Astier A, Rabourdin-Combe C, Servet-Delprat C (2000) Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74:556–559

    PubMed  CAS  Google Scholar 

  • von Herrath MG, Efrat S, Oldstone MB, Horwitz MS (1997) Expression of adenoviral E3 transgenes in beta cells prevents autoimmune diabetes. Proc Natl Acad Sci USA 94:9808–9813

    Google Scholar 

  • Wadell G (1990) In: Zuckerman AJ, Banatvala JE, Pattison JR (eds) Adenoviruses. Wiley, New York, pp 267–297

    Google Scholar 

  • Walczak H, Krammer PH (2000) The CD95 (APO-l/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–66

    PubMed  CAS  Google Scholar 

  • Wallach D (1997) Cell death induction by TNF: a matter of self control. Trends Biochem Sci 22:107–109

    PubMed  CAS  Google Scholar 

  • Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    PubMed  CAS  Google Scholar 

  • White E (1998) Regulation of apoptosis by adenovirus E1A and E1B oncogenes. Semin Virol 8:505–513

    CAS  Google Scholar 

  • White E, Faha B, Stillman B (1986) Regulation of adenovirus gene expression in human WI38 cells by an ElB-encoded tumor antigen. Mol Cell Biol 6:3763–3773

    PubMed  CAS  Google Scholar 

  • Wickham T, Mathias P, Cheresh D, Nemerow G (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    PubMed  CAS  Google Scholar 

  • Wienzek S, Roth J, Dobbelstein M (2000) E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 74:193–202

    PubMed  CAS  Google Scholar 

  • Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120

    PubMed  CAS  Google Scholar 

  • Williams JL, Garcia J, Harrich D, Pearson L, Wu F, Gaynor R (1990) Lymphoid specific gene expression of the adenovirus early region 3 promoter is mediated by NF-K B binding motifs. EMBO J 9:4435–4442

    PubMed  CAS  Google Scholar 

  • Wilson-Rawls J, Wold WS (1993) The E3–6.7K protein of adenovirus is an Asn-linked integral membrane glycoprotein localized in the endoplasmic reticulum. Virology 195:6–15

    PubMed  CAS  Google Scholar 

  • Wissing D, Mouritzen H, Egeblad M, Poirier GG, Jäättelä M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci USA 94:5073–5077

    PubMed  CAS  Google Scholar 

  • Wold WSM, Hermiston TW, Tollefson AE (1995) E3 transcription unit of adenovirus. Curr Top Microbiol Immunol 199/1:237–274

    PubMed  CAS  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-KB activation. Cell 93:1231–1240

    PubMed  CAS  Google Scholar 

  • Yeh HY, Pieniazek N, Pieniazek D, Luftig RB (1996) Genetic organization, size, and complete sequence of early region-3 genes of human adenovirus type-41. J Virol 70:2658–2663

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1999) Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu Rev Cell Dev Biol 15:579–606

    PubMed  CAS  Google Scholar 

  • Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    PubMed  CAS  Google Scholar 

  • Zhang J, Vinkemeier U, Gu W, Chakravarti D, Horvath C, Darnell JJ (1996) Two contact regions between Statl and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA 93:15092–15096

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgert, HG., Ruzsics, Z., Obermeier, S., Hilgendorf, A., Windheim, M., Elsing, A. (2002). Subversion of Host Defense Mechanisms by Adenoviruses. In: Koszinowski, U.H., Hengel, H. (eds) Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59421-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59421-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63974-6

  • Online ISBN: 978-3-642-59421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics