Skip to main content

Counteraction of Interferon-Induced Antiviral Responses by Herpes Simplex Viruses

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 269))

Abstract

The outcome of a viral infection of a host involves the complex interplay of viral determinants of virulence and host resistance factors. Among the first lines of defense for the host in attempts to control viral infection are the interferons (IFNs). A large body of work has now shown that the IFNs are a family of soluble proteins that serve to mediate antiviral effects, to regulate cell growth, and to modulate the activation of immune responses. The innate antiviral activities of IFNs are exceedingly potent and rapid. It is, therefore, not surprising that so many viruses have evolved ways to either preclude the synthesis of IFNs or evade downstream antiviral events. Such evasion allows for the virus to spread before the development of a specific adaptive immune response and likely represents a pivotal determinant of virulence for the invading virus. This review describes some of the research on herpes simplex virus (HSV) that has elucidated genes involved in evasion of the IFN response. In particular, the roles of specific viral genes in resistance to the antiviral effects of PKR and RNaseL are described, along with other HSV genes and loci associated with resistance to IFN for which mechanisms have yet to be described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreansky SS, He B, Gillespie GY, Soroceanu L, Markert J, Chou J, Roizman B, Whitley RJ (1996) The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 93:11313–11318

    Article  PubMed  CAS  Google Scholar 

  • Arnheiter H, Frese M, Kambadur R, Meier E, Haller O (1996) Mx transgenic mice — animal models of health. Curr Top Microbiol Immunol 206:119–147

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Samuel CE (1985) Mechanism of interferon action. The interferon-induced phosphoprotein PI possesses a double-stranded RNA-dependent ATP-binding site. J Biol Chem 260:8237–8239

    PubMed  CAS  Google Scholar 

  • Bolovan CA, Sawtell NM, Thompson RL (1994) ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 68:48–55

    PubMed  CAS  Google Scholar 

  • Cassady KA, Gross M, Roizman B (1998a) The herpes simplex virus US11 protein effectively compensates for the gamma 1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J Virol 72:8620–8626

    PubMed  CAS  Google Scholar 

  • Cassady KA, Gross M, Roizman B (1998b) The second-site mutation in the herpes simplex virus recombinants lacking the gamma 134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 72:7005–7011

    PubMed  CAS  Google Scholar 

  • Cayley PJ, Davies J A, McCullagh KG, Kerr IM (1984) Activation of the ppp (A2´P) nA system in in-terferon-treated, herpes simplex virus-infected cells and evidence for novel inhibitors of the ppp(A2´P)nA-dependent RNase. Eur J Biochem 143:165–174

    Article  PubMed  CAS  Google Scholar 

  • Chou J, Chen JJ, Gross M, Roizman B (1995) Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc Natl Acad Sci USA 92:10516–10520

    Article  PubMed  CAS  Google Scholar 

  • Chou J, Kern ER, Whitley RJ, Roizman B (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250:1262–1266

    Article  PubMed  CAS  Google Scholar 

  • Chou J, Roizman B (1990) The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn +. J Virol 64:1014–1020

    PubMed  CAS  Google Scholar 

  • Chou J, Roizman B (1994) Herpes simplex virus 1 gamma (l)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA 91:5247–5251

    Article  PubMed  CAS  Google Scholar 

  • David M (1995) Transcription factors in interferon signaling. Pharmacol Ther 65:149–161

    Article  PubMed  CAS  Google Scholar 

  • Der SD, Yang YL, Weissmann C, Williams BR (1997) A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci USA 94:3279–3283

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Latoud C, Diaz JJ, Fabre-Jonca N, Kindbeiter K, Madjar JJ, Arrigo AP (1997) Herpes simplex virus Us 11 protein enhances recovery of protein synthesis and survival in heat shock treated HeLa cells. Cell Stress Chaperones 2:119–131

    Article  PubMed  CAS  Google Scholar 

  • Dolan A, McKie E, MacLean AR, McGeoch DJ (1992) Status of the ICP34.5 gene in herpes simplex virus type 1 strain 17. J Gen Virol 73:971–973

    Article  PubMed  CAS  Google Scholar 

  • Dong B, Silverman RH (1995) 2–5A-dependent RNase molecules dimerize during activation by 2–5A. J Biol Chem 270:4133–4137

    Article  PubMed  CAS  Google Scholar 

  • Due Dodon M, Mikaelian I, Sergeant A, Gazzolo L (2000) The herpes simplex virus 1 US 11 protein cooperates with suboptimal amounts of human immunodeficiency virus type 1 (HIV-1) Rev protein to rescue HIV-1 production. Virology 270:43–53

    Google Scholar 

  • Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein [corrected and republished article originally printed in EMBO J 1997 Feb 3; 16(3): 566–577], EMBO J 16:1519–1530

    Google Scholar 

  • Everett RD, Orr A, Preston CM (1998) A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J 17:7161–7169

    Article  PubMed  CAS  Google Scholar 

  • Everly DN, Jr., Read GS (1997) Mutational analysis of the virion host shutoff gene (UL41) of herpes simplex virus (HSV): characterization of HSV type 1 (HSV-l)/HSV-2 chimeras. J Virol 71:7157–7166

    PubMed  CAS  Google Scholar 

  • Farassati F, Yang AD, Lee PW (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3:745–750

    Article  PubMed  CAS  Google Scholar 

  • Fen wick ML, Everett RD (1990) Transfer of UL41, the gene controlling virion-associated host cell shutoff, between different strains of herpes simplex virus. J Gen Virol 71:411–418

    Article  PubMed  CAS  Google Scholar 

  • Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364

    PubMed  CAS  Google Scholar 

  • He B, Chou J, Liebermann DA, Hoffman B, Roizman B (1996) The carboxyl terminus of the murine MyDl 16 gene substitutes for the corresponding domain of the gamma (l)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol 70:84–90

    PubMed  CAS  Google Scholar 

  • He B, Gross M, Roizman B (1997) The gamma (l)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94:843–848

    Article  PubMed  CAS  Google Scholar 

  • Hollander MC, Zhan Q, Bae I, Fornace AJ, Jr (1997) Mammalian GADD34, an apoptosis and DNA damage-inducible gene. J Biol Chem 272:13731–13737

    Article  PubMed  CAS  Google Scholar 

  • Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proceedings of the Royal Society of London 147:258–267

    Article  PubMed  CAS  Google Scholar 

  • Johnson PA, MacLean C, Marsden HS, Dalziel RG, Everett RD (1986) The product of gene US11 of herpes simplex virus type 1 is expressed as a true late gene. J Gen Virol 67:871–883

    Article  PubMed  CAS  Google Scholar 

  • Kerr IM, Brown RE (1978) pppA2´p5´A2´p5´A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci USA 75:256–260

    Google Scholar 

  • Khabar KS, Dhalla M, Siddiqui Y, Zhou A, Al-Ahdal MN, Der SD, Silverman RH. Williams BR (2000) Effect of deficiency of the double-stranded RNA-dependent protein kinase, PKR, on antiviral resistance in the presence or absence of ribonuclease L: HSV-1 replication is particularly sensitive to deficiency of the major IFN-mediated enzymes [In Process Citation]. J Interferon Cytokine Res 20:653–659

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Haque J, Lacoste J, Hiscott J, Williams BR (1994) Double-stranded RNA-dependent protein kinase activates transcription factor NF-k B by phosphorylating I kappa B. Proc Natl Acad Sci USA 91:6288–6292

    Article  PubMed  CAS  Google Scholar 

  • Kwong AD, Frenkel N (1989) The herpes simplex virus virion host shutoff function. J Virol 63:4834–4839

    PubMed  CAS  Google Scholar 

  • Lausch RN, Su YH, Ritchie M, Oakes JE (1991) Evidence endogenous interferon production contributed to the lack of ocular virulence of an HSV intertypic recombinant. Curr Eye Res 10:39–45

    Article  PubMed  Google Scholar 

  • Lebleu B, Sen GC, Shaila S, Cabrer B, Lengyel P (1976) Interferon, double-stranded RNA, and protein phosphorylation. Proc Natl Acad Sci USA 73:3107–3111

    Article  PubMed  CAS  Google Scholar 

  • Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA (1989) Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63:759–768

    PubMed  CAS  Google Scholar 

  • Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW (1999) Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 189:663–672

    Article  PubMed  CAS  Google Scholar 

  • Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW (2000) Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene [see comments], Proc Natl Acad Sci USA 97:6097–6101

    Article  PubMed  CAS  Google Scholar 

  • MacLean CA, Rixon FJ, Marsden HS (1987) The products of gene US11 of herpes simplex virus type 1 are DNA-binding and localize to the nucleoli of infected cells [published erratum appears in J Gen Virol 1988 Mar;69(Pt 3):763], J Gen Virol 68:1921–1937

    Article  PubMed  CAS  Google Scholar 

  • Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial [see comments]. Gene Ther 7:867–874

    Article  PubMed  CAS  Google Scholar 

  • Maul GG (1998) Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20:660–667

    Article  PubMed  CAS  Google Scholar 

  • Maul GG, Guldner HH, Spivack JG (1993) Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICPO) J Gen Virol 74:2679–2690

    Article  PubMed  CAS  Google Scholar 

  • McMenamin MM, Byrnes AP, Pike FG, Charlton HM, Coffin RS, Latchman DS, Wood MJ (1998) Potential and limitations of a gamma 34.5 mutant of herpes simplex 1 as a gene therapy vector in the CNS. Gene Ther 5:594–604

    Article  PubMed  CAS  Google Scholar 

  • Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390

    Article  PubMed  CAS  Google Scholar 

  • Meurs EF, Watanabe Y, Kadereit S, Barber GN, Katze MG, Chong K, Williams BR, Hovanessian AG (1992) Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyo-carditis virus growth. J Virol 66:5804–5814

    Google Scholar 

  • Mittnacht S, Straub P, Kirchner H, Jacobsen H (1988) Interferon treatment inhibits onset of herpes simplex virus immediate-early transcription. Virology 164:201–210

    Article  PubMed  CAS  Google Scholar 

  • Mohr I, Gluzman Y (1996) A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. Embo J 15:4759–4766

    PubMed  CAS  Google Scholar 

  • Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y (2001) A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals J Virol 75:5189–5196

    Article  PubMed  CAS  Google Scholar 

  • Mossman KL, Saffran HA, Smiley JR (2000) Herpes simplex virus ICPO mutants are hypersensitive to interferon. J Virol 74:2052–2056

    Article  PubMed  CAS  Google Scholar 

  • Mulvey M, Poppers J, Ladd A, Mohr I (1999) A herpesvirus ribosome-associated, RNA-binding protein confers a growth advantage upon mutants deficient in a GADD34-related function. J Virol 73: 3375–3385

    PubMed  CAS  Google Scholar 

  • Nanduri S, Carpick BW, Yang Y, Williams BR, Qin J (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. Embo J 17:5458–5465

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Ando Y, Soushi S, Kurata T, Arao Y (1998) The Bglll-N fragment of herpes simplex virus type 2 contains a region responsible for resistance to antiviral effects of interferon. J Gen Virol 79:565–572

    PubMed  CAS  Google Scholar 

  • Ng TI, Chang YE, Roizman B (1997) Infected cell protein 22 of herpes simplex virus 1 regulates the expression of virion host shutoff gene U(L)41. Virology 234:226–234

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW, Baglioni C (1979) Mechanism for discrimination between viral and host mRNA in interferon-treated cells. Proc Natl Acad Sci USA 76:2600–2604

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Kurachi R, Daikoku T, Umene K (1993) The US 9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice. Virology 194:419–423

    Article  PubMed  CAS  Google Scholar 

  • Oberman F, Panet A (1988) Inhibition of transcription of herpes simplex virus immediate early genes in interferon-treated human cells. J Gen Virol 69:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Overton H, McMillan D, Hope L, Wong-Kai-In P (1994) Production of host shutoff-defective mutants of herpes simplex virus type 1 by inactivation of the UL13 gene. Virology 202:97–106

    Article  PubMed  CAS  Google Scholar 

  • Ramaiah KV, Davies MV, Chen J J, Kaufman RJ (1994) Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2α) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2β phosphorylation. Mol Cell Biol 14:4546–4553

    PubMed  CAS  Google Scholar 

  • Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma [see comments].Gene Ther 7:859–866

    Article  PubMed  CAS  Google Scholar 

  • Read GS, Frenkel N (1983) Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. J Virol 46:498–512

    PubMed  CAS  Google Scholar 

  • Roberts WK, Hovanessian A, Brown RE, Clemens MJ, Kerr IM (1976) Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477–480

    Article  PubMed  CAS  Google Scholar 

  • Roller RJ, Roizman B (1990) The herpes simplex virus Us 11 open reading frame encodes a sequence-specific RNA-binding protein. J Virol 64:3463–3470

    PubMed  CAS  Google Scholar 

  • Roller RJ, Roizman B (1992) The herpes simplex virus 1 RNA binding protein US 11 is a virion component and associates with ribosomal 60S subunits. J Virol 66:3624–3632

    PubMed  CAS  Google Scholar 

  • Sacks WR, Schaffer PA (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICPO exhibit impaired growth in cell culture. J Virol 61:829–839

    PubMed  CAS  Google Scholar 

  • Spector FC, Kern ER, Palmer J, Kaiwar R, Cha TA, Brown P, Spaete RR (1998) Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs. J Infect Dis 177:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  PubMed  CAS  Google Scholar 

  • Stow ND, Stow EC (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmwl10. J Gen Virol 67:2571–2585

    Article  PubMed  CAS  Google Scholar 

  • Strelow L, Smith T, Leib D (1997) The virion host shutoff function of herpes simplex virus type 1 plays a role in corneal invasion and functions independently of the cell cycle. Virology 231:28–34

    Article  PubMed  CAS  Google Scholar 

  • Strelow LI, Leib DA (1995) Role of the virion host shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis. J Virol 69:6779–6786

    PubMed  CAS  Google Scholar 

  • Su YH, Oakes JE, Lausch RN (1993) Mapping the genetic region coding for herpes simplex virus resistance to mouse interferon alpha/beta. J Gen Virol 74:2325–2332

    Article  PubMed  CAS  Google Scholar 

  • Sussman MD Lu Z, Kutish G, Afonso CL Roberts P, Rock DL (1992) Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence-associated gene of herpes simplex virus. J Virol 66:5586–5589

    PubMed  CAS  Google Scholar 

  • Suzutani T, Nagamine M Shibaki T, Ogasawara M, Yoshida I, Daikoku T, Nishiyama Y, Azuma M (2000) The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J Gen Virol 81 Pt 7:1763–1771

    Google Scholar 

  • Tan SL, Katze MG (1999) The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine Res 19:543–554

    Article  PubMed  CAS  Google Scholar 

  • Tan SL Katze MG (2000) HSV. Com: maneuvering the internetworks of viral neuropathogenesis and evasion of the host defense [comment]. Proc Natl Acad Sci USA 97:5684–686

    Article  PubMed  CAS  Google Scholar 

  • Taneja S, MacGregor J Markus S, Ha S, Mohr I (2001) Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci USA 98:8804–8808

    Article  PubMed  CAS  Google Scholar 

  • Thomis DC, Samuel CE (1995) Mechanism of interferon action: characterization of the intermolecular autophosphorylation of PKR the interferon-inducible, RNA-dependent protein kinase. J Virol 69:5195–5198

    PubMed  CAS  Google Scholar 

  • Tigges MA, Leng S, Johnson DC, Burke RL (1996) Human herpes simplex virus (HSV)-specific CD8 + CTL clones recognize HSV- 2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J Immunol 156:3901–3910

    PubMed  CAS  Google Scholar 

  • Walker J, Laycock KA, Pepose JS, Leib DA (1998) Postexposure vaccination with a virion host shutoff defective mutant reduces UV-B radiation-induced ocular herpes simplex virus shedding in mice. Vaccine 16:6–8

    Article  PubMed  CAS  Google Scholar 

  • Wildy P, Field HJ, Nash AA (1982) Classical herpes latency revisited. In: Mahy AC, Darby GK (eds) Virus Persistence. Cambridge University Press, Cambridge pp 133–167

    Google Scholar 

  • Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120

    Google Scholar 

  • Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14:2361–2371

    Google Scholar 

  • Zhou A Paranjape JM, Der SD, Williams BR Silverman RH (1999) Interferon action in triply deficient mice reveals the existenceof alternative antiviral pathways. Virology 258:435–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leib, D.A. (2002). Counteraction of Interferon-Induced Antiviral Responses by Herpes Simplex Viruses. In: Koszinowski, U.H., Hengel, H. (eds) Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59421-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59421-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63974-6

  • Online ISBN: 978-3-642-59421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics