Skip to main content

Natural Substrates of the Proteasome and Their Recognition by the Ubiquitin System

  • Chapter
The Proteasome — Ubiquitin Protein Degradation Pathway

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 268))

Abstract

The 26S proteasome is recognized as the principal mediator of intracellular proteolysis in eukaryotes. As a consequence, its influence on cellular metabolism is as complex and manifold as are the proteins degraded by this protease, and new natural substrates are being discovered in ever increasing numbers. It has long been realized that the modulation of the steady-state levels of proteins can occur at the level of their synthesis as well as their degradation (Schimke 1973). Thus, one major area of proteasome function is the control of basic cellular processes such as cell cycle progression, signal transduction, and transcription via the degradation of short-lived regulatory factors. In addition, the proteasome plays a central role in the removal of misfolded, aberrant, or damaged proteins, which is a critical aspect of the cellular stress response. Last but not least, the mammalian proteasome is responsible for the generation of antigenic peptides presented on the cell surface by major histocompatibility complex (MHC) class I molecules as an integral part of the immune system (see the chapter by Niedermann, this volume). Tight control of proteasome activity is essential to guarantee the correctly timed removal of short-lived regulatory proteins but at the same time prevent the untimely destruction of other important cellular components not targeted for degradation. The system that distinguishes between stable proteins and those destined for breakdown and thus ensures the fidelity of selective proteolysis is the ubiquitin system. Accordingly, malfunctions or absence of components of this intricate enzymatic machinery lead to a variety of inherited or acquired diseases (Schwartz and Ciechanover 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673

    PubMed  CAS  Google Scholar 

  • Aristarkhov A, Eytan E, Moghe A, Admon A, Hershko A, Ruderman JV (1996) E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc Natl Acad Sci USA 93:4294–4299

    PubMed  CAS  Google Scholar 

  • Baboshina OV, Haas AL (1996) Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2-EPF and RAD6 are recognized by the 26S proteasome subunit 5. J Biol Chem 271: 2823–2831

    PubMed  CAS  Google Scholar 

  • Bailly V, Prakash S, Prakash L (1997) Domains required for dimerization of yeast RAD6 ubiquitin-conjugating enzyme and RAD 18 DNA binding protein. Mol Cell Biol 17:4536–4543

    PubMed  CAS  Google Scholar 

  • Bartel B, Wünning I, Varshavsky A (1990) The recognition component of the N-end rule pathway. EMBO J 9:3179–3189

    PubMed  CAS  Google Scholar 

  • Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY (2001) Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol 3:24–29

    PubMed  CAS  Google Scholar 

  • Beai R, Deveraux Q, Xia G, Rechsteiner M, Pickart CM (1996) Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc Natl Acad Sci USA 93:861–866

    Google Scholar 

  • Berleth ES, Pickart CM (1996) Mechanism of ubiquitin conjugating enzyme E2–230K: catalysis involving a thiol relay? Biochemistry 35:1664–1671

    PubMed  CAS  Google Scholar 

  • Bordallo J, Wolf DH (1999) A RING-H2 finger motif is essential for the function of Der3/Hrdl in endoplasmic reticulum associated protein degradation in the yeast Saccharomvces cerevisiae. FEBS Lett 448:244–248

    PubMed  CAS  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6:395–401

    PubMed  CAS  Google Scholar 

  • Brzovic PS, Meza J, King MC, Klevit RE (1998) The cancer-predisposing mutation C61G disrupts homodimer formation in the NH2-terminal BRCA1 RING finger domain. J Biol Chem 273:7795–7799

    PubMed  CAS  Google Scholar 

  • Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103:387–398

    PubMed  CAS  Google Scholar 

  • Byrd C, Turner GC, Varshavsky A (1998) The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J 17:269–277

    PubMed  CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol 1:193–199

    PubMed  CAS  Google Scholar 

  • Chang A, Cheang S, Espanel X, Sudol M (2000) Rsp5 WW domains interact directly with the carboxy-terminal domain of RNA polymerase II. J Biol Chem 275:20562–20571

    PubMed  CAS  Google Scholar 

  • Chapman R, Sidrauski C, Walter P (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev Biol 14:459–485

    PubMed  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    PubMed  CAS  Google Scholar 

  • Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATa2 repressor. Cell 74:357–369

    PubMed  CAS  Google Scholar 

  • Chen Z, Naito M, Hon S, Mashima T, Yamori T, Tsuruo T (1999) A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 264:847–854

    PubMed  CAS  Google Scholar 

  • Cheng L, Collyer T, Hardy CF (1999) Cell cycle regulation of DNA replication initiator factor Dbf4p. Mol Cell Biol 19:4270–4278

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Elias S, Heller H, Hershko A (1982) ’Covalent affinity’ purification of ubiquitin activating enzyme. J Biol Chem 257:2537–2542

    PubMed  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Mäher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    PubMed  CAS  Google Scholar 

  • Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pdslp. Genes Dev 10:3081–3093

    PubMed  CAS  Google Scholar 

  • Cook WJ, Jeffrey LC, Kasperek E. Pickart CM (1994) Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J Mol Biol 236:601–609

    PubMed  CAS  Google Scholar 

  • Dai R-M, Chen E. Longo DL, Gorbea CM, Li C-C (1998) Involvement of valosin-containing protein, an ATPase co-purified with IkBa and 26S proteasome, in ubiquitin-proteasome-mediated degradation of IkBa. J Biol Chem 273:3562–3573

    PubMed  CAS  Google Scholar 

  • Davydov IV, Varshavsky A (2000) RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 275:22931–22941

    PubMed  CAS  Google Scholar 

  • De Sepulveda P, Ilangumaran S, Rottapel R (2000) Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J Biol Chem 275:14005–14008

    PubMed  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/RingH2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart CM, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7961

    PubMed  CAS  Google Scholar 

  • Dohmen RJ, Madura K, Bartel B, Varshavsky A (1991) The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sei USA 88:7351–7355

    CAS  Google Scholar 

  • Dor Y, Raboy B, Kulka RG (1996) Role of the conserved carboxy-terminal alpha-helix of Rad6p in ubiquitination and DNA repair. Mol Microbiol 21:1197–1206

    PubMed  CAS  Google Scholar 

  • Drury LS, Perkins G, Diffley JF (1997) The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16:5966–5976

    PubMed  CAS  Google Scholar 

  • Fang G, Yu H, Kirschner MW (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and Gl. Mol Cell 2:163–171

    PubMed  CAS  Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    PubMed  CAS  Google Scholar 

  • Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Siclp. Cell 91:221–30

    PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    PubMed  CAS  Google Scholar 

  • Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, Crooke ST, Chau V (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitin-deficient yeast mutant. Mol Cell Biol 14:5501–5509

    PubMed  CAS  Google Scholar 

  • Fisk HA, Yaffe MP (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol 145:1199–1208

    PubMed  CAS  Google Scholar 

  • Freemont PS (2000) Ubiquitination: RING for destruction? Curr Biol 10:R84–R87

    PubMed  CAS  Google Scholar 

  • Friedländer R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol 2:379–384

    PubMed  Google Scholar 

  • Fritsche J, Rehli M, Krause SW, Andreesen R, Kreutz M (1997) Molecular cloning of a la,25-dihydroxyvitamin D3-inducible transcript (DDVitl) in human blood monocytes. Biochem. Biophys Res Commun 235:407–412

    CAS  Google Scholar 

  • Galan J, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854

    PubMed  CAS  Google Scholar 

  • Galan J-M, Peter M (1999) Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sei USA 96:9124–9129

    CAS  Google Scholar 

  • Ghislain M, Dohmen RJ, Levy F, Varshavsky A (1996) Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J 15:4884–4899

    PubMed  CAS  Google Scholar 

  • Gilon T, Chomsky O, Kulka RG (1998) Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J 17:2759–2766

    PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    PubMed  CAS  Google Scholar 

  • Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sei 16:173–177

    CAS  Google Scholar 

  • Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335

    PubMed  CAS  Google Scholar 

  • Gwozd CS, Arnason TG, Cook WJ, Chau V, Ellison MJ (1995) The yeast UBC4 ubiquitin conjugating enzyme monoubiquitinates itself in vivo. Evidence for an E2-E2 homointeraction. Biochemistry 34:6296–6302

    PubMed  CAS  Google Scholar 

  • Haas AL, Rose IA (1982) The mechanism of ubiquitin activating enzyme. J Biol Chem 257:10329–10337

    PubMed  CAS  Google Scholar 

  • Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. FASEB J 11:1257–1268

    PubMed  CAS  Google Scholar 

  • Hampton RY, Gardner RG, Rine J (1996) Role of the 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7:2029–2044

    PubMed  CAS  Google Scholar 

  • Harvey KF, Dinudom A, Komwatana P, Jolliffe CN, Day ML, Parasivam G, Cook DI, Kumar S (1999) All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J Biol Chem 274:12525–12530

    PubMed  CAS  Google Scholar 

  • Harvey KF, Kumar S (1999) Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends Cell Biol 9:166–169

    PubMed  CAS  Google Scholar 

  • Hauser HP, Bardroff M, Pyrowolakis G, Jentsch S (1998) A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J Cell Biol 141:1415–1422

    PubMed  CAS  Google Scholar 

  • Heller H, Hershko A (1990) A ubiquitin-protein ligase specific for type III protein substrates. J Biol Chem 265:6532–6535

    PubMed  CAS  Google Scholar 

  • Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M (1997) Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Farlp in budding yeast. Genes Dev 11:3046–3060

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  • Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen LH, Luca FC, Ruderman JV, Eytan E (1994) Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem 269:4940–4946

    PubMed  CAS  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214

    PubMed  CAS  Google Scholar 

  • Herskowitz I, Rine J, Strathern J (1992) Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The Molecular and Cellular Biology of the Yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 583–656

    Google Scholar 

  • Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    PubMed  CAS  Google Scholar 

  • Hitchcock AL, Krebber H, Frietze S, Lin A, Latterich M, Silver PA (2001) The conserved npl4 protein, complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell 12:3226–3241

    PubMed  CAS  Google Scholar 

  • Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, Tanaka K, Hoeijmakers JH, Hanaoka F (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J Biol Chem 274:28019–28025

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    PubMed  CAS  Google Scholar 

  • Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    PubMed  CAS  Google Scholar 

  • Hofmann RM, Pickart CM (2001) In vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 276:27936–27943

    PubMed  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM 2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    PubMed  CAS  Google Scholar 

  • Honda R, Yasuda H (2000) Activity of MDM 2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476

    PubMed  CAS  Google Scholar 

  • Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586

    PubMed  CAS  Google Scholar 

  • Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834

    PubMed  CAS  Google Scholar 

  • Hu G, Fearon ER (1999) Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol 19:724–732

    PubMed  CAS  Google Scholar 

  • Hu G, Zhang S, Vidal M, Baer JL, Xu T, Fearon ER (1997) Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev 11:2701–2714

    PubMed  CAS  Google Scholar 

  • Huang L, Kinnucan E, Wang G, Beaudenon S, Hovvley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326

    PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:2563–2567

    PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus type 16 or 18. EMBO J 10:4129–4135

    PubMed  CAS  Google Scholar 

  • Huibregtse JM, Yang JC, Beaudenon SL (1997) The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA 94:3656–3661

    PubMed  CAS  Google Scholar 

  • Hwang LH, Murray AM (1997) A novel yeast screen for mitotic arrest mutants identifies DOC I. a new gene involved in cyclin proteolysis. Mol Cell Biol 8:1877–1887

    CAS  Google Scholar 

  • Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in siter chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81:269–278

    PubMed  CAS  Google Scholar 

  • Jariel-Encontre I, Pariat M, Martin F, Carillo S, Salvat C, Piechaczyk M (1995) Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26S proteasome. J Biol Chem 270:11623–11627

    PubMed  CAS  Google Scholar 

  • Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, Wilkinson KD, Maul GG, Barlev N, Berger SL, Prendergast GC, Rauscher FJ (1998) BAP1: a novel ubiquitin hydrolyse which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16:1097–1112

    PubMed  CAS  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    PubMed  CAS  Google Scholar 

  • Johnson ES, Gonda DK, Varshavsky A (1990) Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346:287–291

    PubMed  CAS  Google Scholar 

  • Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456

    PubMed  CAS  Google Scholar 

  • Johnson PR, Swanson R, Rakhilina L, Hochstrasser M (1998) Degradation signal masking by hetero-dimerization of MATa2 and MATal blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–227

    PubMed  CAS  Google Scholar 

  • Juang YL, Huang J, Peters JM, McLaughlin ME, Tai CY, Pellman D (1997) APC-mediated proteolysis of Asel and the morphogenesis of the mitotic spindle. Science 275:1311–1314

    PubMed  CAS  Google Scholar 

  • Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    PubMed  CAS  Google Scholar 

  • Kaiser P, Sia RA, Bardes EG, Lew DJ, Reed SI (1998) Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swel. Genes Dev 12:2587–2597

    PubMed  CAS  Google Scholar 

  • Kamura T, Burian D, Yan Q, Schmidt SL, Lane WS, Querido E, Branton PE, Shilatifard A, Conaway RC, Conaway JW (2001) Mufl, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbxl to reconstitute a ubiquitin ligase. J Biol Chem 276:29748–29753

    PubMed  CAS  Google Scholar 

  • Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Jr. WGK, Elledge SJ, Conaway RC, Harper JW, Conaway JW (1999) Rbxl, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661

    PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Conaway RC, Conaway JW (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras WD-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    PubMed  CAS  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-KB activity. Annu Rev Immunol 18:621–663

    PubMed  CAS  Google Scholar 

  • Kaye FJ, Modi S, Ivanovska I, Koonin EV, Thress K, Kubo A, Kornbluth S, Rose MD (2000) A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Lett 467:348–352

    PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    PubMed  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    PubMed  CAS  Google Scholar 

  • Kominami K, Toda T (1997) Fission yeast WD-repeat protein popl regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Ruml and the S-phase initiator Cdcl8. Genes Dev 11:1548–1560

    PubMed  CAS  Google Scholar 

  • Koonin EV, Abagyan RA (1997) TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nature Genet 16:330–331

    PubMed  CAS  Google Scholar 

  • Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88:427–430

    PubMed  CAS  Google Scholar 

  • Kornitzer D, Ciechanover A (2000) Modes of regulation of ubiquitin-mediated protein degradation. J Cell Phys 182:1–11

    CAS  Google Scholar 

  • Kühne C, Banks L (1998) E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273:34302–34309

    PubMed  Google Scholar 

  • Kulka RG, Raboy B, Schuster R, Parag HA, Diamond G. Ciechanover A, Marcus M (1988) A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, E1. J Biol Chem 263:15726–15731

    PubMed  CAS  Google Scholar 

  • Kumar S, Kao WH, Howley PM (1997) Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 272:13548–13554

    PubMed  CAS  Google Scholar 

  • Kumar S, Talis AL, Howley PM (1999) Identification of HHR23 A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem 274:18785–18792

    PubMed  CAS  Google Scholar 

  • Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshavsky A (1998) The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci USA 95:7898–7903

    PubMed  CAS  Google Scholar 

  • Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-inter-acting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153:69–79

    PubMed  CAS  Google Scholar 

  • Lammer D, Mathias N, Laplaza JM, Jiang W, Liu Y, Callis J, Goebl M, Estelle M (1998) Modification of yeast Cdc53p by the ubiquitin-related protein Rublp affects function of the SCFCcd4 complex. Genes Dev 12:914–926

    PubMed  CAS  Google Scholar 

  • Laney JD, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97:427–430

    PubMed  CAS  Google Scholar 

  • Lanker S, Valdivieso MH, Wittenberg C (1996) Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597–1601

    PubMed  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    PubMed  CAS  Google Scholar 

  • Li S, Li Y, Carthew RW, Lai Z-C (1997) Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90:469–478

    PubMed  CAS  Google Scholar 

  • Li X, Stebbins B, Hoffman L, Pratt G, Rechsteiner M, Coffino P (1996) The N terminus of antizyme promotes degradation of heterologous proteins. J Biol Chem 271:4441–4446

    PubMed  CAS  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–2214

    PubMed  CAS  Google Scholar 

  • Lin L, Ghosh S (1996) A glycine-rich region in NF-KB pi05 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol 16:2248–2254

    PubMed  CAS  Google Scholar 

  • Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) b-TrCP couples b-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278

    PubMed  CAS  Google Scholar 

  • Lomonte P, Everett RD (1999) Herpes simplex virus type 1 intermediate-early protein VmwllO inhibits progression of cells through mitosis and from G into S phase of the cell cycle. J Virol 73:9456–9467

    PubMed  CAS  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369

    PubMed  CAS  Google Scholar 

  • Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    PubMed  Google Scholar 

  • Madura K, Varshavsky A (1994) Degradation of Ga by the N-end rule pathway. Science 265:1454–1458

    PubMed  CAS  Google Scholar 

  • Maeda I, Ohta T, Koizumi H, Fukuda M (2001) In vitro ubiquitination of cyclin D1 by ROC1-CUL1 and ROC1-CUL3. FEBS Lett 494:181–185

    PubMed  CAS  Google Scholar 

  • Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-bTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    PubMed  CAS  Google Scholar 

  • Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol 1:14–19

    PubMed  CAS  Google Scholar 

  • Martinez-Noel G, Niedenthal R, Tamura T, Harbers K (1999) A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4. FEBS Lett 454:257–261

    PubMed  CAS  Google Scholar 

  • Mastrandrea LD, You J, Niles EG, Pickart CM (1999) E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J Biol Chem 274:27299–27306

    PubMed  CAS  Google Scholar 

  • Mathias N, Johnson S, Byers B, Goebl M (1999) The abundance of cell cycle regulatory protein Cdc4p is controlled by interactions between its F box and Skplp. Mol Cell Biol 19:1759–1767

    PubMed  CAS  Google Scholar 

  • Matsuzawa S, Takayama S. Froesch BA, Zapata JM. Reed JC 1998 p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J 17:2736–2747

    PubMed  CAS  Google Scholar 

  • Matuschewski K, Hauser HP, Treier M, Jentsch S (1996) Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J Biol Chem 271:2789–2794

    PubMed  CAS  Google Scholar 

  • May MJ, Ghosh S (1998) Signal transduction through NF-KB. Immunol Today 19:80–88

    PubMed  CAS  Google Scholar 

  • Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17:3251–3257

    PubMed  CAS  Google Scholar 

  • Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D (2000) Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell 11:915–927

    PubMed  CAS  Google Scholar 

  • Meyer HH, Shorter JG, Seemann J, Pappin D, Warren GB (2000) A complex of mammalian Ufdl and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192

    PubMed  CAS  Google Scholar 

  • Morimoto M, Nishida T, Honda R, Yasuda H (2000) Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCFSkp2 toward p27Kipl. Biochem Biophys Res Commun 270:1093–1096

    PubMed  CAS  Google Scholar 

  • Moynihan TP, Ardley HC, Nuber U, Rose SA, Jones PF, Markaham AF, Scheffner M, Robinson PA (1999) The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING Finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem 274:30963–30968

    PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Hayashi S, Tanahashi N, Tanaka K (2000) Degradation of ornithine decarboxylase by the 26S proteasome. Biochem Biophys Res Commun 267:1–6

    PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Hayashi SI, Tanahashi N, Tanaka K (1999) ATP-dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol Cell Biol 19:7216–7227

    PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360: 597–599

    PubMed  CAS  Google Scholar 

  • Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12:405–412

    PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    PubMed  CAS  Google Scholar 

  • Nefsky B, Beach D (1996) Publ acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J 15:1301–1312

    PubMed  CAS  Google Scholar 

  • Nuber U, Schwarz S, Kaiser P, Schneider R, Scheffner M (1996) Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5. J Biol Chem 271:2795–2800

    PubMed  CAS  Google Scholar 

  • Nuber U, Schwarz SE, Scheffner M (1998) The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur J Biochem 254:643–649

    PubMed  CAS  Google Scholar 

  • Ohta T, Michel JJ, Schottelius AJ, Xiong Y (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3:535–541

    PubMed  CAS  Google Scholar 

  • Ortolan TG, Tongaonkar P, Lambertson D, Chen L, Schauber C, Madura K (2000) The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nature Cell Biol 2:601–608

    PubMed  CAS  Google Scholar 

  • Page AM, Hieter P (1999) The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68:583–609

    PubMed  CAS  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kB 1 precursor protein and the activation of NF-KB. Cell 78:773–785

    PubMed  CAS  Google Scholar 

  • Parag HA, Raboy B, Kulka RG (1987) Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J 6:55–61

    PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Tyers M (1998a) Cdc53 is a scaffold protein for multiple Cdc34/Skpl/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705

    PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Tyers M (1998b) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14:236–243

    PubMed  CAS  Google Scholar 

  • Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, Rauscher FJ (2000) Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 295:1139–1162

    PubMed  CAS  Google Scholar 

  • Peters J-M (1999) Subunits and substrates of the anaphase-promoting complex. Exp Cell Res 248: 339–349

    PubMed  CAS  Google Scholar 

  • Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdhl. Genes Dev 14:655–665

    PubMed  CAS  Google Scholar 

  • Pickart CM (1997) Targeting of substrates to the 26S proteasome. FASEB J 11:1055–1066

    PubMed  CAS  Google Scholar 

  • Piotrowski J, Beal R, Hoffman L, Wilkinson KD, Cohen RE, Pickart CM (1997) Inhibition of the 26S proteasome by polyubiquitin chains synthesized to have defined lengths. J Biol Chem 272:23712–23721

    PubMed  CAS  Google Scholar 

  • Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272:32329–32336

    PubMed  CAS  Google Scholar 

  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    PubMed  CAS  Google Scholar 

  • Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES, Chau V (2000) A nedd8 conjugation pathway is essential for proteolytic targeting of p27Kipl by ubiquitination. Proc Natl Acad Sci USA 97:4579–4584

    PubMed  CAS  Google Scholar 

  • Ponting CP, Cai Y-D, Bork P (1997) The breast cancer gene product TSG101: a regulator of ubiquitination? J Mol Med 75:467–469

    PubMed  CAS  Google Scholar 

  • Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci USA 95:7904–7908

    PubMed  CAS  Google Scholar 

  • Prinz S, Hwang ES, Visintin R, Amon A (1998) The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 8:750–760

    PubMed  CAS  Google Scholar 

  • Rao H, Uhlmann F, Nasmyth K, Varshavsky A (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410:955–959

    PubMed  CAS  Google Scholar 

  • Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ (2000) Nedd8 modification of cul-1 activates SCF?-TrCP-dependent ubiquitination of IkBa. Mol Cell Biol 20:2326–2333

    PubMed  CAS  Google Scholar 

  • Reiss Y, Kaim D, Hershko A (1988) Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase: use of amino acid derivatives to characterize specific binding sites. J Biol Chem 263:2693–2698

    PubMed  CAS  Google Scholar 

  • Rodgers KK, Bu Z, Fleming KG, Schatz DG, Engelman DM, Coleman JE (1996) A zinc-binding domain involved in the dimerization of RAG1. J Mol Biol 260:70–84

    PubMed  CAS  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    PubMed  CAS  Google Scholar 

  • Rothofsky ML, Lin SL (1997) CROC-I encodes a protein which mediates transcriptional activation of. the human FOS promoter. Gene 195:141–149

    PubMed  CAS  Google Scholar 

  • Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D (2000) Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30) complex. EMBO J 19:282–294

    PubMed  CAS  Google Scholar 

  • Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA (1999) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3:687–695

    PubMed  CAS  Google Scholar 

  • Sadis S, Atienza C, Finley D (1995) Synthetic signals for ubiquitin-dependent proteolysis. Mol Cell Biol 15:4086–4094

    PubMed  CAS  Google Scholar 

  • Salama SR, Hendricks KB, Thorner J (1994) G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol Cell Biol 14:7953–7966

    PubMed  CAS  Google Scholar 

  • Salvat C, Aquaviva C, Jariel-Encontre I, Ferrara P, Pariat M, Steff AM, Carillo S, Piechaczyk M (1999) Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? Mol Biol Rep 26:45–51

    PubMed  CAS  Google Scholar 

  • Sancho E, Vilá MR, Sánchez-Pulido L, Lozano JJ, Paciucci R, Nadal M, Fox M, Harvey C, Bercovich B, Loukili N, Ciechanover A, Lin SL, Sanz F, Estivill X, Valencia A, Thomson TM (1998) Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Mol Cell Biol 18:576–589

    PubMed  CAS  Google Scholar 

  • Saurín AJ, Borden KLB, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21:208–214

    PubMed  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P, Vega I, Madura K (1998a) Sequence elements that contribute to the degradation of yeast G alpha. Genes Cells 3:307–319

    PubMed  CAS  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W, Madura K (1998b) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718

    PubMed  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    PubMed  CAS  Google Scholar 

  • Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    PubMed  CAS  Google Scholar 

  • Schimke RT (1973) Control of enzyme levels in mammalian tissues. Adv Enzymol 37:135–187

    PubMed  CAS  Google Scholar 

  • Schwab M, Lutum AS, Seufert W (1997) Yeast Hctl is a regulator of Clb2 cyclin proteolysis. Cell 90: 683–693

    PubMed  CAS  Google Scholar 

  • Schwartz A, Ciechanover A (1999) The ubiquitin-proteasome pathway: involvement in the pathogenesis of human diseases. Annu Rev Med 50:57–74

    PubMed  CAS  Google Scholar 

  • Schwarz SE, Rosa JL, Scheffner M (1998) Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 273:12148–12154

    PubMed  CAS  Google Scholar 

  • Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Shevchenko A, Deshaies R (1999) Cdc53/cullin and the essential Hrtl RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 13:1614–1626

    PubMed  CAS  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9:543–550

    PubMed  CAS  Google Scholar 

  • Seufert W, Jentsch S (1992) In vivo function of the proteasome in the ubiquitin pathway. EMBO J 11:3077–3080

    PubMed  CAS  Google Scholar 

  • Seufert W, McGrath JP, Jentsch S (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J 9:4535–4541

    PubMed  CAS  Google Scholar 

  • Shirayama M, Toth A, Galova M, Nasmyth K (1999) APCCDC20 promotes exit from mitosis by destroying the anaphase inhibitor Pdsl and cyclin Clb5. Nature 402:203–207

    PubMed  CAS  Google Scholar 

  • Shirayama M, Zachariae W, Ciosk R, Nasmyth K (1998) The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 17:1336–1349

    PubMed  CAS  Google Scholar 

  • Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387

    PubMed  CAS  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    PubMed  CAS  Google Scholar 

  • Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrrl and Rbxl. Science 284:662–665

    PubMed  CAS  Google Scholar 

  • Sommer T, Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11:1227–1233

    PubMed  CAS  Google Scholar 

  • Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    PubMed  CAS  Google Scholar 

  • Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkBa by the F-box protein Slimb/b-TrCP. Genes Dev 13:284–294

    PubMed  CAS  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Stebbins CE, Kaelin WG, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    PubMed  CAS  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6:185–197

    PubMed  CAS  Google Scholar 

  • Sudol M (1996) Structure and function of the WW domain. Prog Biophys Mol Biol 65:113–132

    PubMed  CAS  Google Scholar 

  • Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15:2660–2674

    PubMed  CAS  Google Scholar 

  • Tanaka K, Suzuki T, Chiba T (1998) The ligation systems for ubiquitin and ubiquitin-like proteins. Mol Cells 8:503–512

    PubMed  CAS  Google Scholar 

  • Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90:459–467

    PubMed  CAS  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    PubMed  CAS  Google Scholar 

  • Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K (2000) Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol 20:4691–4698

    PubMed  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    PubMed  CAS  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-jun degradation in vivo is mediated by the d domain. Cell 78:787–798

    PubMed  CAS  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zang H (1999) p27(Kipl) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thrl87 in p27. Curr Biol 9:661–664

    PubMed  CAS  Google Scholar 

  • Tyers M, Jorgensen P (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opinion Genet Dev 10:54–64

    CAS  Google Scholar 

  • Ulrich HD, Jentsch S (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J 19:3388–3397

    PubMed  CAS  Google Scholar 

  • van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra R (1996) The multiubiquitin-chain-binding protein Mcbl is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028

    PubMed  Google Scholar 

  • Varshavsky A (1996) The N-end rule: Functions, mysteries, uses. Proc Natl Acad Sci USA 93:12142–12149

    PubMed  CAS  Google Scholar 

  • Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2:13–28

    PubMed  CAS  Google Scholar 

  • Visintin R, Prinz S, Amon A (1997) CDC20 and CDH1: a family of substrate specific activators of APC-dependent proteolysis. Science 278:460–463

    PubMed  CAS  Google Scholar 

  • Wang G, Yang J, Huibregtse JM (1999) Functional domains of the Rsp5 ubiquitin-protein ligase. Mol Cell Biol 19:342–352

    PubMed  CAS  Google Scholar 

  • Whaley JM, Naglich J, Gelbert L, Hsia YE, Lamiell JM, Green JS, Collins D, Neumann HP, Laidlaw J, Li FP, et al. (1994) Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet 55:1092–1102

    PubMed  CAS  Google Scholar 

  • Wilhovsky S, Gardner R, Hampton R (2000) HRD gene dependence of endoplasmic reticulum-associated degradation. Mol Biol Cell 11:1697–1708

    PubMed  CAS  Google Scholar 

  • Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11:1245–1256

    PubMed  CAS  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCF b-TrCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkBa and b-catenin and stimulates IkBa ubiquitination in vitro. Genes Dev 13:270–283

    PubMed  CAS  Google Scholar 

  • Xie Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chains. EMBO J 18:6832–6844

    PubMed  CAS  Google Scholar 

  • Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci USA 97:2497–2502

    PubMed  CAS  Google Scholar 

  • Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D (1995) p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 15:731–741

    PubMed  CAS  Google Scholar 

  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877

    PubMed  CAS  Google Scholar 

  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y (1998) Identification of the receptor component of the IkBa-ubiquitin ligase. Nature 396:590–594

    PubMed  CAS  Google Scholar 

  • Yashiroda H, Kaina D, Toh-e A, Kikuchi Y (1998) The PY-motif of Bull protein is essential for growth of Saccharomyces cerevisiae under various stress conditions. Gene 225:39–46

    PubMed  CAS  Google Scholar 

  • Yashiroda H, Oguchi T, Yasuda Y, Toh-e A, Kikuchi Y (1996) Bull, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol 16:3255–3263

    PubMed  CAS  Google Scholar 

  • Yokouchi M, Kondo T, Houghton A, Bartkeiwicz M, Horne WC, Zhang H, Yoshimura A, Baron R (1999) Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 274:31707–31712

    PubMed  CAS  Google Scholar 

  • Zachariae W, Schwab M, Nasmyth K, Seufert W (1998b) Control of cyclin ubiquitination by CDK-regulated binding of Hctl to the anaphase promoting complex. Science 282:1721–1724

    PubMed  CAS  Google Scholar 

  • Zachariae W, Shevchenko A, Andrews PD, Ciosk R, Galova M, Stark MJ, Mann M, Nasmyth K (1998a) Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279:1216–1219

    PubMed  CAS  Google Scholar 

  • Zachariae W, Shin T-H, Galova M, Obermaier B, Nasmyth K (1996) New subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274:1201–1204

    PubMed  CAS  Google Scholar 

  • Zhou P, Howley PM (1998) Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2:571–580

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ulrich, H.D. (2002). Natural Substrates of the Proteasome and Their Recognition by the Ubiquitin System. In: Zwickl, P., Baumeister, W. (eds) The Proteasome — Ubiquitin Protein Degradation Pathway. Current Topics in Microbiology and Immunology, vol 268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59414-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59414-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63971-5

  • Online ISBN: 978-3-642-59414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics