Skip to main content

The 11S Regulators of 20S Proteasome Activity

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 268))

Abstract

The 20S proteasome, an approximately 700-kDa complex of 28 protein subunits, performs most of the proteolysis that takes place in the cytosol and nucleus of eukaryotic cells. As discussed elsewhere in this volume, structural studies on the 20S proteasome revealed that the active sites are sequestered within a central catalytic chamber that substrates access by passing through a narrow opening (α annulus) (Groll et al. 1997; Löwe et al. 1995; Wenzel and Baumeister 1995). This architecture explains how the 20S proteasome, which is an abundant and nonspecific protease, avoids unregulated degradation of inappropriate substrates. Because the α annulus is normally closed by N-terminal sequences of the 20S proteasome α subunits, this architecture also appears to restrict the release of degradation products from the proteasome interior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn JY, Tanahashi N, Akiyama K, Hisamatsu H, Noda C, Tanaka K, Chung CH, Shimbara N, Willy PJ, Mott JD, Slaughter CA, DeMartino GN (1995) Primary structures of two homologous subunits of PA28, a γ-interferon inducible protein activator of the 20S proteasome. FEBS Lett 366:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ahn K, Erlander M, Leturcq D, Peterson PA, Früh K, Yang Y (1996) In vivo characterization of the proteasome regulator PA28. J Biol Chem 271:18237–18242

    Article  PubMed  CAS  Google Scholar 

  • Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem 272:1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Beninga J, Rock KL, Goldberg AL (1998) Interferon-γ can stimulate post-proteasomal trimming of the N-terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273:18734–18742

    Article  PubMed  CAS  Google Scholar 

  • Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, Steven AC (1998) At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J Struct Biol 123:248–259

    Article  PubMed  CAS  Google Scholar 

  • Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Reehsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J (2000) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346:155–161

    Article  PubMed  CAS  Google Scholar 

  • Craiu A, Akopian T, Goldberg AL, Rock KL (1997) Two distinct proteolytic processes in the generation of a major histocompatibility class I presented peptide. Proc Natl Acad Sei USA 94:10850–10854

    Article  CAS  Google Scholar 

  • DeMartino GN, Slaughter CA (1999) The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 274:22123–22126

    Article  Google Scholar 

  • Dick LR, Moomaw CR, DeMartino GN, Slaughter CA (1991) Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry 30:2725–2734

    Article  PubMed  CAS  Google Scholar 

  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanovi S, Wolf DH, Huber R, Rammensee HG, Schild H (1998) Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273:25637–25646

    Article  PubMed  CAS  Google Scholar 

  • Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic S, Schild H, Rammensee HG (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262

    Article  PubMed  CAS  Google Scholar 

  • Dolenc I, Seemüller E, Baumeister W (1998) Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett 434:357–361

    Article  PubMed  CAS  Google Scholar 

  • Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365:262–264

    Article  PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Reehsteiner M (1992) Purification of an 11S regulator of the multicatalytic protease. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Eleuteri AM, Kohanski RA, Cardozo C, Orlowski M (1997) Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J Biol Chem 272:11824–11831

    Article  PubMed  CAS  Google Scholar 

  • Elliott T, Willis A, Cerundolo V, Townsend A (1995) Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J Exp Med 181:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • Engelhard VH (1994) Structure of peptides associated with MHC class I molecules. Curr Opinion Immunology 6:13–23

    Article  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN (2000) Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275:409–413

    Article  PubMed  CAS  Google Scholar 

  • Früh K, Yang Y (1999) Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 11:76–81

    Article  PubMed  Google Scholar 

  • Gaczynska M, Goldberg AL, Tanaka K, Hendil KB, Rock KL (1996) Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-γ-induced subunits LMP2 and LMP7. J Biol Chem 271:17275–17280

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264–267

    Article  PubMed  CAS  Google Scholar 

  • Gray C, Slaughter CA, DeMartino GN (1994) PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 236:7–15

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Koszinowski HH, Kloetzel PM (1996a) A role for the proteasome regulator PA28α in antigen presentation. Nature 381:166–168

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Kuckelkorn U, Kloetzel PM (1996b) Peptide antigen production by the proteasome: complexity provides efficiency. Immunology Today 17:429–435

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7: 062–1067

    Article  Google Scholar 

  • Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hendil KB, Khan S, Tanaka K (1998) Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem J 332:749–754

    PubMed  Google Scholar 

  • Hoffman L, Rechsteiner M (1996) Regulatory features of multicatalytic and 26S proteases. In: Stadtman ER, Chock PB (eds) Current Topics In Cellular Regulation. Academic Press, San Diego, pp 1–32

    Chapter  Google Scholar 

  • Jiang H, Monaco JJ (1997) Sequence and expression of mouse proteasome activator PA28 and the related autoantigen Ki. Immunogenetics 46:93–98

    Article  PubMed  CAS  Google Scholar 

  • Johnston SC, Whitby FW, Realini C, Rechsteiner M, Hill CP (1997) The proteasome 1 IS regulator subunit REGα(PA28α is a heptamer. Protein Science 6:2469–2473

    Article  PubMed  CAS  Google Scholar 

  • Kalmes A, Hagemann C, Weber CK, Wixler L, Schuster T, Rapp UR (1998) Interaction between the protein kinase B-Raf and the alpha-subunit of the 11S proteasome regulator. Cancer Res 58:2986–2990

    PubMed  CAS  Google Scholar 

  • Kandil E, Kohda K, Ishibashi T, Tanaka K, Kasahara M (1997) PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics 46:337–344

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Castillo V, Goldberg AL (1999a) Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 4:395–402

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Goldberg AL (1998) Range of sizes of peptide products generated during sdegradation of different proteins by archaeal proteasomes. J Biol Chem 273:1982–1989

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999b) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel PM, Soza A, Stohwasser R (1999) The role of the proteasome system and the proteasome activator PA28 complex in the cellular immune response. Biol Chem 380:293–297

    Article  PubMed  CAS  Google Scholar 

  • Knowlton JR, Johnston SC, Whitby FG, Realini CR, Zhang Z, Rechsteiner MC, Hill CP (1997) Structure of the proteasome activator REGa(PA28a). Nature 390:639–643

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1996a) Proteasome activator PA28 and its interaction with 20S proteasomes. Arch Biochem Biophys 329:87–96

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1996b) Reconstitution of proteasome activator PA28 from isolated subunits: optimal activity is associated with an alpha, beta-heteromultimer. FEBS Lett 394:183–186

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1997) Structural and functional properties of proteasome activator PA28. Mol Biol Rep 24:89–93

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gao X, Joss L, Rechsteiner M (2000) The proteasome activator 11S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits. J Mol Biol 299:641–654

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lerea KM, Etlinger JD (1996) Phosphorylation of the proteasome activator PA28 is required for proteasome activation. Biochem Biophys Res Commun 225:855–860

    Article  PubMed  CAS  Google Scholar 

  • Loidl G, Groll M, Musiol HJ, Ditzel L, Huber R, Moroder L (1999) Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 6:197–204

    Article  PubMed  CAS  Google Scholar 

  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. cicidophilum at 3.4Å resolution. Science 268:533–539

    Article  PubMed  Google Scholar 

  • Ma CP, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267:10515–10523

    PubMed  CAS  Google Scholar 

  • Ma CP, Willy PJ, Slaughter CA, DeMartino GN (1993) PA28, an activator of the 20S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J Biol Chem 268:22514–22519

    PubMed  CAS  Google Scholar 

  • Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M (1999) Dendritic cells upregulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 29:4037–4042

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych WP, Ikawa T, Yamaguchi A, Ikeda M, McDonald D, Laouar L, Lahesmaa R, Tamura N, Khuong A, Yu DTY, Kane KP (1998) Invasion by Salmonella typhimurium induces increased expression of the LMP, MECL, and PA28 proteasome genes and changes in the peptide repertoire of HLA-B27. Infect Immun 66:4624–4632

    PubMed  CAS  Google Scholar 

  • Minami Y, Kawasaki H, Minami M, Tanahashi N, Tanaka K, Yahara I (2000) A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding. J Biol Chem 275:9055–9061

    Article  PubMed  CAS  Google Scholar 

  • Mott JD, Pramanik BC, Moomaw CR, Afendis SJ, DeMartino GN, Slaughter CA (1994) PA28, an activator of the 20S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem 269:31466–31471

    PubMed  CAS  Google Scholar 

  • Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K, Chiba T (1999) Growth retardation in mice lacking the proteasome activator PA28γ. J Biol Chem 274:38211–38215

    Article  PubMed  CAS  Google Scholar 

  • Mykles DL (1996) Differential effects of bovine PA28 on six peptidase activities of the lobster muscle proteasome (multicatalytic proteinase). Arch Biochem Biophys 325:77–81

    Article  PubMed  CAS  Google Scholar 

  • Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soll J, Omura S, Reehsteiner MC, Baumeister W, Eichmann K (1997) Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system. J Exp Med 186:209–220

    Article  PubMed  CAS  Google Scholar 

  • Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, Hunt DF, Eichmann JC (1996) The proteolytic fragments generated by vertebrate proteasomes: Structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93:8572–8577

    Article  PubMed  CAS  Google Scholar 

  • Nikaido T, Shimada K, Shibata M, Hata M, Sakamoto M, Takasaki Y, Sato C, Takahashi T, Nishida Y (1990) Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol 79:209–214

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, Schild H (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 95:125024–12509

    Article  Google Scholar 

  • Ordway GA, Neufer PD, Chin ER, DeMartino GN (2000) Chronic contractile activity upregulates the proteasome system in rabbit skeletal muscle. J Appl Physiol 88:1134–1141

    PubMed  CAS  Google Scholar 

  • Paesen GC, Nuttall PA (1996) A tick homolog of the human Ki nuclear autoantigen. Biochim Biophys Acta 1309:9–13

    PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I - restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  PubMed  CAS  Google Scholar 

  • Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Slater-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Früh K, Yang Y (1999) Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286:2162–2165

    Article  PubMed  CAS  Google Scholar 

  • Rammensee HG, Falk K, Rotzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244

    Article  PubMed  CAS  Google Scholar 

  • Realini C, Dubiel W, Pratt G, Ferrell K, Reehsteiner M (1994a) Molecular cloning and expression of a gamma-interferon inducible activator of the multicatalytic protease. J Biol Chem 269:20727–20732

    PubMed  CAS  Google Scholar 

  • Realini C, Jensen CC, Zhang Z, Johnston SC, Knowlton JR, Hill CP, Reehsteiner M (1997) Characterization of recombinant REGα, REG7β and REGγ proteasome activators. J Biol Chem 272:25483–25492

    Article  PubMed  CAS  Google Scholar 

  • Realini C, Reehsteiner M (1995) A proteasome activator subunit binds calcium. J Biol Chem 270:29664–29667

    Article  PubMed  CAS  Google Scholar 

  • Realini C, Rogers SW, Reehsteiner M (1994b) KEKE motifs: proposed roles in protein-protein association and presentation of peptides by MHC Class I receptors. FEBS Lett 348:109–113

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem J 345:1–15

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    Article  PubMed  CAS  Google Scholar 

  • Schmidtke G, Emch S, Groettrup M, Holzhutter HG (2000) Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20S proteasome. J Biol Chem 275:22056–22063

    Article  PubMed  CAS  Google Scholar 

  • Schwarz K, van Den Broek M, Kostka S, Kraft R, Soza A, Schmidtke G, Kloetzel PM, Groettrup M (2000) Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28ocα/β, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J Immunol 165:768–778

    PubMed  CAS  Google Scholar 

  • Shimbara N, Nakajima H, Tanahashi N, Ogawa K, Niwa S, Uenaka A, Nakayama E, Tanaka K (1997) Double-cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes Cells 2:785–800

    Article  PubMed  CAS  Google Scholar 

  • Snyder HL, Yewdell JW, Bennink JR (1994) Trimming of antigenic peptides in an early secretory compartment. J Exp Med 180:2389–2394

    Article  PubMed  CAS  Google Scholar 

  • Song X, Mott JD, von Kampen J, Pramanik B, Tanaka K, Slaughter CA, DeMartino GN (1996) A model for the quaternary structure of the proteasome activator PA28. J Biol Chem 271:26410–26417

    Article  PubMed  CAS  Google Scholar 

  • Song X, von Kampen J, Slaughter CA, DeMartino GN (1997) Relative functions of the a and β subunits of the proteasome activator, PA28. J Biol Chem 272:27994–28000

    Article  PubMed  CAS  Google Scholar 

  • Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K, Kloetzel PM (1997) Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Lett 413:27–34

    Article  PubMed  CAS  Google Scholar 

  • Stern LJ, Wiley DC (1994) Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2:245–251

    Article  PubMed  CAS  Google Scholar 

  • Stohwasser R, Salzmann U, Giesebrecht J, Kloetzel PM, Holzhutter HG (2000) Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur J Biochem 267:6221–6230

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K (2000) Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J Biol Chem 275:14336–14345

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi N, Yokota K, Ahn JY, Chung CH, Fujiwara T, Takahashi E, DeMartino GN, Slaughter CA, Toyonaga T, Yamamura K, Shimbara N, Tanaka K (1997) Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells 2:195–211

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    Article  PubMed  CAS  Google Scholar 

  • To WY, Wang CC (1997) Identification and characterization of an activated 20S proteasome in Trypanosoma brucei. FEBS Lett 404:253–262

    Article  PubMed  CAS  Google Scholar 

  • Tojo T, Kaburaki J, Hayakawa M, Okamoto T, Tomii M, Homma M (1981) Precipitating antibody to a soluble nuclear antigen ‘Ki’ with specificity for systemic lupus erythematosus. Ryumachi 21: Suppl: 129–140

    PubMed  Google Scholar 

  • Ustrell V, Pratt G, Rechsteiner M (1995) Effects of interferon y and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. Proc Natl Acad Sci USA 92:584–588

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem: 1015–1068

    Google Scholar 

  • Wenzel T, Baumeister W (1995) Conformational constraints in protein degradation by the 20S proteasome. Nature Structural Biology 2:199–204

    Article  PubMed  CAS  Google Scholar 

  • Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120

    Article  PubMed  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    Article  PubMed  CAS  Google Scholar 

  • Wojcik C, Tanaka K, Paweletz N, Naab U, Wilk S (1998) Proteasome activator (PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol 77:151–160

    PubMed  CAS  Google Scholar 

  • Yao Y, Huang L, Krutchinsky A, Wong ML, Standing KG, Burlingame AL, Wang CC (1999) Structural and functional characterization of the proteasome-activating protein PA26 from Trypanosoma brucei. J Biol Chem 274:33921–33930

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1992) Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol 52:1–123

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Clawson A, Realini C, Jensen CC, Knowlton JR, Hill CP, Rechsteiner M (1998a) Identification of an activation region in the proteasome activator REGα. Proc Natl Acad Sci USA 95:2807–2811

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Clawson A, Rechsteiner M (1998b) The proteasome activator or PA28. Contribution by both α and β subunits to proteasome activation. J Biol Chem 273:30660–30668

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Kruchinsky A, Endicott S, Realini C, Rechsteiner M, Standing KG (1999) Proteasome activator 11S REG or PA28. Recombinant REGα/REGβ hetero-oligomers are heptamers. Biochemistry 38:5651–5658

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Realini C, Clawson A, Endicott S, Rechsteiner M (1998c) Proteasome activation by REG molecules lacking homolog-specific inserts. J Biol Chem 273:9501–9509

    Article  PubMed  CAS  Google Scholar 

  • Zuhl F, Tamura T, Dolenc I, Cejka Z, Nagy I, De Mot R, Baumeister W (1997) Subunit topology of the Rhodococcus proteasome. FEBS Lett 400:83–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, C.P., Masters, E.I., Whitby, F.G. (2002). The 11S Regulators of 20S Proteasome Activity. In: Zwickl, P., Baumeister, W. (eds) The Proteasome — Ubiquitin Protein Degradation Pathway. Current Topics in Microbiology and Immunology, vol 268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59414-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59414-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63971-5

  • Online ISBN: 978-3-642-59414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics