Skip to main content

Host Genetic Resistance to Japanese Encephalitis Group Viruses

  • Chapter
Japanese Encephalitis and West Nile Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 267))

Abstract

The host response to pathogenic infectious agents consists of a complex interaction between innate resistance mechanisms, non-specific immunity and specific adaptive immunity. These three protective mechanisms are regulated by host genes (Table 1). Because of their suitability for experimentation, mice have provided much of the evidence for the genetic regulation of these protective responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnheiter H, Staeheli P (1983) Expression of interferon dependent resistance to influenza virus in mouse embryo cells. Arch Virol 76: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Bartholomeusz AI, Wright RI (1993) Synthesis of dengue virus RNA in vitro: initiation and the involvement of proteins NS3 and NS5. Arch Virol 128: 111–121

    Article  PubMed  CAS  Google Scholar 

  • Blackwell JL, Brinton MA (1995) BHK cell proteins that bind to the 3’ stem-loop structure of the West Nile virus genome RNA. J Virol 69: 5650–5658

    PubMed  CAS  Google Scholar 

  • Blackwell JL, Brinton MA (1997) Translation elongation factor-1 alpha interacts with the 3’ stem-loop region of West Nile virus genomic RNA. J Virol 71: 6433–6444

    PubMed  CAS  Google Scholar 

  • Blaskovic D, Nosek J (1972) The ecological approach to the study of tick-borne encephalitis. Prog Med Virol 14: 275–320

    PubMed  CAS  Google Scholar 

  • Bonhomme F (1986) Evolutionary relationships in the genus Mus. Curr Top Microbiol Immunol 127: 19–34

    PubMed  CAS  Google Scholar 

  • Bonhomme F, Guenet JL (1989) The wild house mouse and its relatives. In: Lyon MF, Searle AG (eds) Genetic Variants and Strains of the Laboratory Mouse. Oxford University Press, Oxford, pp 649–662

    Google Scholar 

  • Bonhomme F, Guenet JL, Dod B, Moriwaki K, Bulfield G (1987) The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol J Linnean Soc 30: 51–58

    Article  Google Scholar 

  • Bravo JR, Guzman MG, Kouri GP (1987) Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome ( DHF/DSS ). Trans R Soc Trop Med Hyg 81: 816–820

    Article  PubMed  CAS  Google Scholar 

  • Brinton MB (1981) Genetically controlled resistance to flavivirus and lactate-dehydrogenase-elevating virus-induced disease. Curr Top Microbiol Immunol 92: 1–14

    PubMed  CAS  Google Scholar 

  • Brinton MA (1982) Characterisation of West Nile virus persistent infections in genetically resistent and susceptible mouse cells. I. Generation of defective non-plaquing virus particles. Virology 116: 84–98

    Article  PubMed  CAS  Google Scholar 

  • Brinton MA (1983) Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. J Virol 46: 860–870

    PubMed  CAS  Google Scholar 

  • Brinton MA, Dispoto JH (1988) Sequence and secondary structure analysis of the 5’-terminal region of flavivirus genome RNA. Virology 162: 290–299

    Article  PubMed  CAS  Google Scholar 

  • Brinton MA, Fernandez AV (1983) A replication-efficient mutant of West Nile virus is insensitive to DI particle interference. Virology 129: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Brinton MA, Arnheiter H, Haller O (1982) Interferon independence of genetically controlled resistance to flaviviruses. Infect Immun 36: 284–288

    PubMed  CAS  Google Scholar 

  • Brinton MA, Davis J, Schaefer D (1985) Characterization of West Nile virus persistent infections in genetically resistant and susceptible mouse cells. Virology 140: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Brownstein DG, Bhatt PN, Gras L, Jacoby RD (1991) Chromosomal locations and gonadal dependence of genes that mediate resistance to ectromelia (mouse pox) virus-induced mortality. J Virol 65: 1946–1951

    PubMed  CAS  Google Scholar 

  • Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WG (1989) Antigen relationships between Flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70: 37–43

    Article  PubMed  Google Scholar 

  • Cardosa MJ, Gordon S, Hirsch S, Springer TA, Porterfield JS (1986) Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J Virol 57: 952–959

    PubMed  CAS  Google Scholar 

  • Chen LK, Liao CL, Lin CG, Lai SC, Liu CI, Ma SH, Huang YY, Lin YL (1996) Persistence of Japanase encephalitis virus is associated with abnormal expression of the non-structural protein NSI in host cell. Virology 217: 220–229

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Kuo MD, Chien LJ, Hsu SL, Wang YM, Lin JH (1997) RNA-protein interactions: involvement of NS3, NS5 and 3’ non coding regions of Japanese encephalitis virus genomic RNA. J Virol 71: 3466–3473

    PubMed  CAS  Google Scholar 

  • Coelen RJ, Mackenzie JS (1990) The 5’-terminal non-coding region of Murray Velley encephalitis virus RNA is highly conserved. J Gen Virol 71: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Darnell MB, Koprowski H. Lagerspetz K (1974) Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis 129: 240–247

    Article  PubMed  CAS  Google Scholar 

  • De Madrid AT, Porterfield JS (1974) The flaviviruses (group B arboviruses): a cross-neutralization study. J Gen Virol 23: 91–96

    Article  PubMed  Google Scholar 

  • Dimmock NJ (1985) Defective interfering viruses: modulators of infection. Microbiol Sci 2: 1–7

    PubMed  CAS  Google Scholar 

  • Goodman GT, Koprowski H (1962a) Study of the mechanism of innate resistance to virus infection. J Cell Comp Physiol 59: 333–373

    Article  PubMed  CAS  Google Scholar 

  • Goodman GT, Koprowski H (1962h) Macrophages as a cellular expression of inherited natural resistance. Proc Natl Acad Sci USA 48: 160–165

    Article  PubMed  CAS  Google Scholar 

  • Green MC (1989) Catalog of mutant genes and polymorphic loci. In: Green MC (ed) Genetic Variants and Strains of the Laboratory mouse. G. Fischer, Stuttgart. pp 12–403

    Google Scholar 

  • Gröschel D, Koprowski H (1965) Development of a virus-resistant inbred mouse strain for the study of innate resistance to arbo B viruses. Arch Ges Virusforsch 17: 379–391

    Article  PubMed  Google Scholar 

  • Grun JB, Brinton MA (1986) Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts. J Virol 60: 1113–1124

    PubMed  CAS  Google Scholar 

  • Grun JB, Brinton MA (1987) Dissociation of NS5 from cell fractions containing West Nile virus-specific polymerase activity. J Virol 61: 3641–3644

    PubMed  CAS  Google Scholar 

  • Haller O, Frese M, Kochs G (1998) Mx proteins: mediators of resistance to RNA viruses. Rev Sci Tech Off Int Epiz 17: 220–230

    CAS  Google Scholar 

  • Hanson B, Koprowski H, Baron S, Buckler CE (1969) Interferon-mediated natural resistance of mice to arbo B virus infection. Microbios 1B: 51–68

    CAS  Google Scholar 

  • Hawken RJ, Beattie CW, Schook LB (1998) Resolving the genetics of resistance to infectious diseases. Rev Sci Tech Off int Epiz 17: 17–25

    CAS  Google Scholar 

  • Heinz FX, Collett MS, Purcell RH, Gould EA. Howard CR. Houghton M, Moormann RJM, Rice CM. Thiel HJ (2000) Flaviviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL. Carstens EB, Estes MK. Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus Taxonomy. Classification and nomenclature of viruses. 7th Report of the International Committee for the Taxonomy of Viruses. Academic Press, San Diego, pp 859–878

    Google Scholar 

  • Holland JJ (1990). Defective viral genomes, In: Fields BN, Knipe DM, et al. (eds) Virology, Raven Press, Ltd, New York. pp 151–165

    Google Scholar 

  • Huang AS, Baltimore D (1970) Defective viral particles and viral disease processes. Nature 226: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Jacoby RO, Bhatt PN (1976) Genetic resistance to lethal flavivirus encephalitis. I. Infection of congenic mice with Banzi virus. J Infect Dis 134: 158–165

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur P (1979) The Fri gene of the mouse and its control of murine leukemia virus replication. Curr Top Microbiol Immunol 86: 67–122

    PubMed  CAS  Google Scholar 

  • Karupiah TR, Xie Q-W, Bubbler RML, Nathan C, Duarte C. MacMicking JD (1993) Inhibition of viral replication by interferon-y-induced nitric oxide synthase. Science 261: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  • Kreil TR, Eibl MM (1995) Viral infection of macrophages profoundly alters requirements for induction of nitric oxide synthesis. Virology 212: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Lai MMC (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Lancaster M. Hodgetts SI, Mackenzie JS, Urosevic N (1998) Characterisation of defective viral RNA produced during persistent infection of Vero cells with Murray Valley encephalitis virus. J Virol 72: 2474–2482

    PubMed  CAS  Google Scholar 

  • Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LK, Liao CL (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71: 5227–5235

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Hughes TP (1936) The inheritance of susceptibility to yellow fever encephalitis in mice. Genetics 21: 104–112

    PubMed  CAS  Google Scholar 

  • Miura K, Goto N, Suzuki H, Fujisaki Y (1988) Strain differences of mouse in susceptibility to Japanese encephalitis virus infection. Expl Anim 37: 365–373

    CAS  Google Scholar 

  • Miura K, Onodera T, Nishida A, Goto N, Fujisaki Y (1990) A single gene controls resistance to Japanese encephalitis in mice. Arch Virol 112: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Monath TP. Heinz FX (1996) Flaviviruses. In: Fields BN, Knipe DM. Howley PM (eds) Virology, 3rd Edition, Lippincott-Raven Publishers, Philadelphia. pp 961–1034

    Google Scholar 

  • Muylaert IR, Galler R, Rice CM (1997) Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71: 291–298

    PubMed  CAS  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  • Pereira RA, Scalzo AA, Simmons A (2001) An NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J Immunol 166: 5869–5873

    PubMed  CAS  Google Scholar 

  • Pogodina VV, Savinov AP (1964) Variation in the pathogenicity of viruses of the tick-borne encephalitis complex for different animal species. I. Experimental infection of mice and hamsters. Acta Virol 8: 424–434

    PubMed  CAS  Google Scholar 

  • Poidinger M, Coelen RJ, Mackenzie JS (1991) Persistent infection of Vero cells by the flavivirus Murray Valley encephalitis virus. J Gen Virol 72: 573–578

    Article  PubMed  Google Scholar 

  • Poidinger M, Hall RA, Mackenzie JS (1996) Molecular characterization of the Japanese encephalitis serocomplex of the Flavivirus genus. Virology 218: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Pope M, Marsden PA, Cole E. Sloan S, Fung LS, Ning Q, Ding JW, Leibowitz JL. Phillips MJ, Levy GA (1998) Resistance to murine hepatitis virus strain 3 is dependent on production of nitric oxide. J Virol 72: 7084–7090

    PubMed  CAS  Google Scholar 

  • Proutski V, Gould EA, Holmes EC (1997) Secondary structure of the 3’ untranslated region of flaviviruses: similarities and differences. Nucl Acids Res 25: 1194–1202

    Article  PubMed  CAS  Google Scholar 

  • Rauscher S, Flamm C, Mandl CW, Heinz FX, Stadler PF (1997) Secondary structure of the 3’-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. RNA 3: 779–791

    PubMed  CAS  Google Scholar 

  • Raut CG, Deolankar RP, Kolhapure RM, Goverdhan MK (1996) Susceptibility of laboratory-bred rodents to the experimental infection with dengue virus type 2. Acta Virol 40: 143–146

    PubMed  CAS  Google Scholar 

  • Reid HW. Moss R. Pow I, Buxton D (1980) The response of three grouse species ( Tetrao urogallus, Lagopus mutus. Lagopus lagopus) to louping-ill virus. J Comp Pathol 90: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1952a) Nature of inherited resistance to viruses affecting the nervous system. Proc Nat(Acad Sci USA 38: 540–546

    Article  CAS  Google Scholar 

  • Sabin AB (1952b) Genetic, hormonal and age factors in natural resistance to certain viruses. Ann NY Acad Sci 54: 936–944

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1954) Genetic factors affecting susceptibility and resistance to virus diseases of the nervous system. Res Publ Assoc Res Nery Ment Dis 33: 57–66

    CAS  Google Scholar 

  • Sangster MY, Shellam GR (1986) Genetically controlled resistance to flaviviruses within the house mouse complex of species. Curr Top Microbiol Immunol 127: 313–318

    PubMed  CAS  Google Scholar 

  • Sangster MY, Heliams DB, Mackenzie JS, Shellam GR (1993) Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus (Fir). J Virol 67: 340–347

    PubMed  CAS  Google Scholar 

  • Sangster MY, Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR (1994) Mapping the Fir locus controlling resistance to flaviviruses on mouse Chromosome 5. J Virol 68: 448–452

    PubMed  CAS  Google Scholar 

  • Sangster MY, Mackenzie JS, Shellam GR (1998) Genetically determined resistance to flavivirus infection in wild Mars inusculus domesticus and other taxonomic groups in the genus Mus. Arch Virol 143: 697–715

    Article  PubMed  CAS  Google Scholar 

  • Scalzo AA. Fitzgerald NA. Simmons A, La Vista AB, Shellam GR (1990) Canr-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171: 1469–1483

    Article  PubMed  CAS  Google Scholar 

  • Shellam GR, Urosevic N, Sangster MY, Mansfield JP, Mackenzie JS (1993) Characterization of allelic forms at the retinal degeneration (rcl) and b-glucuronidase (Gus) loci for the mapping of the flavivirus resistance (Fly) gene on mouse chromosome 5. Mouse Genome 91: 572–574

    Google Scholar 

  • Shellam GR, Sangster MY, Urosevic, N (1998) Genetic control of host resistance to flavivirus infection in animals. Rev Sei Tech Off Int Epiz 17: 231–248

    CAS  Google Scholar 

  • Shi PY, Li W, Brinton MA (1996) Cell proteins bind specifically to West Nile virus minus-strand 3’ stem-loop RNA. J Virol 70: 6278–6287

    PubMed  CAS  Google Scholar 

  • Silvia OJ (2000) The analysis of natural resistance to flaviviruses in mice and different cell culture models. PhD Thesis, University of Western Australia

    Google Scholar 

  • Silvia OJ, Urosevic N (1999) Variations in LPS responsiveness among different mouse substrains of C3H lineage and their congenic derivative sublines. Immunogenetics 50: 354–357

    Article  PubMed  CAS  Google Scholar 

  • Silvia OJ, Shellam GR, Urosevic N (2001) Innate resistance to flavivirus infection in mice controlled by Fly is nitric oxide-independent. J Gen Virol 82: 603–607

    PubMed  CAS  Google Scholar 

  • Slavin HB (1943) Persistence of the virus St. Louis encephalitis virus in the central nervous system of mice for over 5 months. J Bacteriol 46:113–120

    PubMed  CAS  Google Scholar 

  • Smith AL (1981) Genetic resistance to lethal flavivirus encephalitis: effect of host age and immune status and route of inoculation on production of interfering Banzi virus in vivo. Am J Trop Med Hyg 30: 1319–1323

    PubMed  CAS  Google Scholar 

  • Smith AL, Jacoby RO, Bhatt PN (1980) Genetic resistance to lethal flavivirus infection: detection of interfering virus produced in vivo. In: Skamene E, Kongshavn P, Landy M (eds) Genetic control of natural resistance to infection and malignancy, Academic Press, New York, pp 305–311

    Google Scholar 

  • Smithburn KC, Haddow AI (1949) The susceptibility of African wild animals to yellow fever. Am J Trop Med 29: 389–423

    CAS  Google Scholar 

  • Tan B-H, Fu J, Sugrue RJ, Yap E-H, Chan Y-C, Tan H (1996) Recombinant dangue type 1 virus NS5 protein expressed in Escherichia coli exibits RNA-dependent RNA polymerase activity. Virology 216: 317–325

    Article  PubMed  CAS  Google Scholar 

  • Thaler L (1986) Origin and evolution of mice: an appraisal of fossil evidence and morphological traits. Curr Top Microbiol Immunol 127: 3–11

    PubMed  CAS  Google Scholar 

  • Theiler M (1930) Studies on the action of yellow fever virus in mice. Annals Trop Med Parasitol 24: 249–272

    Google Scholar 

  • Urosevic N, Sangster MY, Mansfield JP, Mackenzie JS and Shellam GR (1993) Flavivirns resistance (Fir r) gene in mice: mapping studies. Arbovirus Res Australia 6: 130–134

    Google Scholar 

  • Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR (1995) Low resolution mapping around the flavivirus resistance locus (Fir) on mouse Chromosome 5. Mammalian Genome 6: 454–458

    Article  PubMed  CAS  Google Scholar 

  • Urosevic N, van Maanen M, Mansfield JP, Mackenzie JS, Shellam GR (1997) Molecular characterisation of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. J Gen Virol 78: 23–29

    PubMed  CAS  Google Scholar 

  • Urosevic N, Mann K, Hodgetts SI, Shellam GR (1997) The use of microsatellites in high-resolution genetic mapping around the mouse fiavivirus resistance locus (Flv). Arbovirus Res Australia 7: 296–299

    Google Scholar 

  • Urosevic N, Silvia OJ, Sangster MY, Mansfield JP, Hodgetts SI, Shellam GR (1999) Development and characterization of new fiavivirus-resistant mouse strains bearing Fivr-like and Flvinr alleles from wild or wild-derived mice. J Gen Virol 80: 897–906

    PubMed  CAS  Google Scholar 

  • Urosevic N, Silvia OJ, Shellam GR (2000) Host natural resistance to flaviviruses controlled by Flv. In: Samal SK, Liebler-Tenorio E, Delsert C, Paton D (eds) Research Advances in Virology, Global Research Network, Thiruvananthapuram, Kerala, India, pp 79–89

    Google Scholar 

  • Vainio T, Gwatkin R, Koprowski H (1961) Production of interferon by brains of genetically resistant and susceptible mice infected with West Nile virus. Virology 14: 385–387

    Article  PubMed  CAS  Google Scholar 

  • Warren AJ (1951) Landmarks in the conquest of yellow fever. In: Strode GK (ed) Yellow fever. McGraw-Hill, New York, pp 1–37

    Google Scholar 

  • Webster LT (1937) Inheritance of resistance of mice to enteric bacterial and neurotropic virus infections. J Exp Med 65: 261–286

    Article  PubMed  CAS  Google Scholar 

  • Webster LT, Clow AD (1936) Experimental encephalitis (St. Louis type) in mice with high inborn resistance. J Exp Med 63: 827–845

    Article  PubMed  CAS  Google Scholar 

  • Webster LT, Johnson MS (1941) Comparative virulence of St. Louis encephalitis virus cultured with brain tissue from innately susceptible and innately resistant mice. J Exp Med 74: 489–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urosevic, N., Shellam, G.R. (2002). Host Genetic Resistance to Japanese Encephalitis Group Viruses. In: Mackenzie, J.S., Barrett, A.D.T., Deubel, V. (eds) Japanese Encephalitis and West Nile Viruses. Current Topics in Microbiology and Immunology, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59403-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59403-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63966-1

  • Online ISBN: 978-3-642-59403-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics