Skip to main content

Interaction of West Nile and Kunjin Viruses with Cellular Components During Morphogenesis

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 267))

Abstract

Studies on the morphogenesis of flaviviruses have been a challenge and even now there are still many gaps left unfilled. One reason for this could be the complexity of the arthropod—vertebrate replication cycle. Host-induced effects seemed to have some influence on the morphogenesis of these viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee K, Singh KR (1968) Establishment of carrier cultures of Aedes albopictus cell line infected with arboviruses. Ind J Med Res 56:812–814

    CAS  Google Scholar 

  • Bielefeldt-Ohmann H, Meyer M, Fitzpatrick DR, Mackenzie JS (2001) Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res 73:81–89

    Article  PubMed  CAS  Google Scholar 

  • Calberg-Bacq CM, Rentier-Delrue F, Osterrieth PM, Duchesne PY (1975) Electron microscopy studies on Banzi virus particle and its development in the suckling mice brains. J Ultrastruc Res 53:193–203

    Article  CAS  Google Scholar 

  • Candurra NA, Lago MJ, Maskin L, Damonte EB (1999) Involvement of the cytoskeleton in Junin virus multiplication. J Gen Virol 80:147–156

    PubMed  CAS  Google Scholar 

  • Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Med 8:866–871

    Google Scholar 

  • Darnell J, Lodish H, Baltimore D (1986) Molecular cell biology. Scientific American Books, New York, pp 617–666

    Google Scholar 

  • Davey MW, Dalgarno L (1974) Semliki Forest virus replication in cultured Aedes albopictus cells: studies on the establishment of persistence. J Gen Virol 24:453–463

    Article  PubMed  CAS  Google Scholar 

  • Deubel V, Digoutte JP (1981) Morphogenesis of yellow fever virus in Aedes aegy,pti cultured cells. I. Isolation of different cellular clones and the study of their susceptibility to infection with the virus. Am J Trop Med Hyg 30:1060–1070

    PubMed  CAS  Google Scholar 

  • Fenner F, McAuslan BR, Mims CA, Sambrook J, White DO (1974) The Biology of Animal Viruses, 2nd edition. Academic Press, New York

    Google Scholar 

  • Filshie BK, Rehacek J (1968) Studies of the morphology of Murray valley encephalitis and Japanese encephalitis viruses growing in cultured mosquito cells. Virology 34:435–443

    Article  PubMed  CAS  Google Scholar 

  • Gollins SW, Porterfield JS (1984) Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody on viral fate. J Gen Virol 65:1261–1272

    Article  PubMed  Google Scholar 

  • Gollins SW, Porterfield JS (1985) Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J Gen Virol 66:1969–1982

    Article  PubMed  Google Scholar 

  • Gollins SW, Porterfield JS (1986a) pH-dependent fusion between the fiavivirus West Nile and liposomal model membranes. J Gen Virol 67:157–166

    Article  CAS  Google Scholar 

  • Gollins SW, Porterfield JS (1986b) The uncoating and infectivity of the fiavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol 67:1941–1950

    Article  CAS  Google Scholar 

  • Guirakhoo F, Heinz FX, Kunz C (1989) Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH Virology 169:90–99

    CAS  Google Scholar 

  • Gupta S, Bishnu P De, Drazba JA, Banerjee AK (1998) Involvement of actin microfilaments in the replication of human parainfiuenza virus type 3. J Virol 72:2655–2662

    PubMed  CAS  Google Scholar 

  • Hase T, Summers PL, Eckels KH (1989a) Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 104:129–143

    Article  CAS  Google Scholar 

  • Hase T, Summers PL, Eckels KH, Putnak JR (1989b) Morphogenesis of Flaviviruses. In: Harris JR (eds) Subcellular Biochemistry Vol 15 Virally infected cells. Plenum Press, New York, pp 275–305

    Google Scholar 

  • Hase T, Summers PL, Ray P (1990) Entry and replication of Japanese encephalitis virus in cultured neurogenic cells. J Virol Methods 30:205–214

    Article  PubMed  CAS  Google Scholar 

  • Heine UI, Demsey AE, Tucker RW, Bykovsky AF (1985) Intracellular type A retrovirus movement associated with an intact microtubule system. J Virol 66:275–282

    Article  Google Scholar 

  • Ho ESP, Somasundaram C, Ng ML (1987) Comparative ultrastructural studies of three flaviviruses in Vero cells. Trop Med 29:65–79

    Google Scholar 

  • Hong SS, Ng ML (1987) Involvement of microtubules in kunjin virus replication. Arch Virol 97:115–121

    Article  PubMed  CAS  Google Scholar 

  • Hung SL, Lee PL, Chen HW, Chen LK, Kao CL, King CC (1999) Analysis of the steps involved in dengue virus entry into host cells. Virology 257:156–167

    Article  PubMed  CAS  Google Scholar 

  • Igarashi A (1978) Isolation of a Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol 40:531–544

    Article  PubMed  CAS  Google Scholar 

  • Ishak R, Tovey DG, Howard CR (1988) Morphogenesis of yellow fever virus 17D in infected cell cultures. J Gen Virol 69:325–335

    Article  PubMed  Google Scholar 

  • Jesus Martinez-Barragan J, Angel RM (2001) Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75:7818–7827

    Article  Google Scholar 

  • Jones OT, Earnest JP, McNamee MG (1987) Solubilisation and reconstitution of membrane proteins. In: Findley JBC, Evans WH (eds) Biological membranes: A practical approach, IRL Press, Oxford, pp 139–177

    Google Scholar 

  • Kimura T, Gollins SW, Porterfield JS (1986) The effect of pH on the early interaction of West Nile with P388D1 cells. J Gen Virol 67:2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Knudson DL, Buckley SM (1977) Invertebrate cell culture methods for the study of invertebrate-associated animal viruses. Methods Virol 6:323–391

    Google Scholar 

  • Ko KK, Igarashi A, Fukai K (1979) Electron microscopic observations on Aedes albopictus cells infected with dengue viruses. Arch Virol 62:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lau LCL (1992) Entry of Kunjin virus into Vero cells. PhD thesis, National University of Singapore

    Google Scholar 

  • Leary K, Blair CD (1980) Sequential events in the morphogenesis of Japanese encephalitis virus. J Ultrastruc Res 72:123–129

    Article  CAS  Google Scholar 

  • Liebhaber H, Riordan JT, Horstmann DM (1967) Replication of Rubella virus in a continuous line of African Green Monkey cells (Vero). Proc Soc Exp Biol Med (NY) 125:636–643

    CAS  Google Scholar 

  • Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in fiavivirusinfected cells. J Virol 73:9555–9567

    PubMed  CAS  Google Scholar 

  • Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the Flavivirus Kunjin non-structural proteins NS2A and NS4A. Virology 245:203–215

    Article  PubMed  CAS  Google Scholar 

  • Mandl CW, Guirakhoo F, Holzmann H, Heinz FX, Kunz C (1989) Antigenic structure of the fiavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol 63:564–571

    PubMed  CAS  Google Scholar 

  • Maxfield FR (1985) Acidification of endocytotic vesicles and lysosomes. In: Pastan I, Willingham MC (eds) Endocytosis. Plenum Press, New York, pp 235–258

    Google Scholar 

  • Murphy FA (1980) Morphology and morphogenesis. In: Monath (ed) St. Louis encephalitis. Am Publ Health Assoc, Washington, DC, pp 65–193

    Google Scholar 

  • Murray AM, Morahan PS (1973) Studies of interferon production in Aedes albopictus mosquito cells (36946). Proc Soc Exp Biol Med 142:11–15

    PubMed  CAS  Google Scholar 

  • Nejmeddine M, Trugnan G, Sapin C, Kohli E, Svensson L, Lopez S, Cohen J (2000) Rotavirus spike protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells. J Virol 74:3313–3320

    Article  PubMed  CAS  Google Scholar 

  • Ng ML (1987) Ultrastructural studies of kunjin virus-infected Aedes alhopictus cells. J Gen Virol 68: 577–582

    Article  PubMed  Google Scholar 

  • Ng ML, Ho ESP (1989) Ultrastructural studies of fiaviviruses in C6/36 cells. In: Mitsuhashi J (ed) Invertebrate cell systems in application. CRC Press. Boca Raton. FL. pp 157–167

    Google Scholar 

  • Ng ML, Hong SS (1988) The role of C6/36 cell cytoskeleton in the replication of kunjin virus. In: Kuroda Y, Kurstak E, Maramorosch K (eds) Invertebrate and Fish Tissue Culture. Japan Scientific Societies Press and Tokyo/Springer-Verlag. Berlin, pp 144–151

    Google Scholar 

  • Ng ML, Hong SS (1989) Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 protein with microtubules. Arch Virol 106:103–120

    Article  PubMed  CAS  Google Scholar 

  • Ng ML, Howe J, Sreenivasan V, Mulders JJL (1994) Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 137:303–313

    Article  PubMed  CAS  Google Scholar 

  • Ng ML, Lau LCL (1988) Possible involvement of receptors in the entry of kunjin virus into Vero cells. Arch Virol 100:199–211

    Article  PubMed  CAS  Google Scholar 

  • Ng ML, Tan SH, Chu JJH (2001) Transport and budding at two distinct sites of visible nucleocapsids of West Nile (Sarafend) virus. J Med Virol 65:758–764

    Article  PubMed  CAS  Google Scholar 

  • Ng ML, Westaway EG (1979) Proteins specified by togaviruses in infected Aedes albopictus (Singh) mosquito cells. J Gen Virol 43:91–101

    Article  PubMed  CAS  Google Scholar 

  • Ng ML, Westaway EG (1980) Establishment of persistent infections by fiaviviruses in Aedes albopictus cells. In: Kurstak E, Maramorosch K, Dubendorfer A (eds) Invertebrate Systems in vitro. Elsevier, North Holland Biomedical Press. pp 389–402

    Google Scholar 

  • Ng ML, Westaway EG (1983) Phenotypic changes in the flavivirus kunjin after a single cycle of growth in an Aedes alhopictus cell line. J Gen Virol 64:1715–1723

    Article  PubMed  CAS  Google Scholar 

  • Ota Z (1965) Electron microscope study of the development of Japanese B encephalitis virus in porcine kidney stable (PS) cells. Virology 25:372–378

    Article  PubMed  CAS  Google Scholar 

  • Peleg J (1969) Inapparent persistent virus infection in continuously grown Aedes aegrpti mosquito cells. J Gen Virol 5:463–471

    Article  Google Scholar 

  • Putnak JR, Kanesa-Thasan N, Innis BL (1997) A putative cellular receptor for dengue viruses. Nature Med 3:828–829

    Article  PubMed  CAS  Google Scholar 

  • Ravkov EV, Nichol ST, Peters CJ, Compans RW (1998) Role of actin microfilaments in Black Creek Canal virus morphogenesis. J Virol 72:2865–2870

    PubMed  CAS  Google Scholar 

  • Rehacek J (1968) Persistent infection of mosquito cells grown in vitro with Murray Valley encephalitis and Japanese encephalitis viruses. Acta Virol 12:340–346

    PubMed  CAS  Google Scholar 

  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2A resolution. Nature 25; 375:291–298

    Article  CAS  Google Scholar 

  • Sankaran D, Lau LCL, Ng ML (1997) Interaction of kunjin virus with octyl-D-glucoside extracted Vero cell plasma membrane. J Virol Methods 63:167–173

    Article  PubMed  CAS  Google Scholar 

  • Satake M, Luftig RB (1982) Microtubule-depolymerizing agents inhibit Moloney marine leukaemia virus production. J Gen Virol 58:339–349

    Article  PubMed  CAS  Google Scholar 

  • Sinarachatanant P, Olson LC (1973) Replication of dengue virus type 2 in Aedes albopictus cell culture. J Virol 12:275--283

    PubMed  CAS  Google Scholar 

  • Singh KR (1967) Cell cultures derived from larvae of Aedes albopictus (Skase) and Aedes aegrpti (L). Curr Sci 36:506–508

    Google Scholar 

  • Stollar V (1978) Inhibition of Sindbis virus replication in Aedes albopictus cells deprived of methionine. Virology 91:504–507

    Article  PubMed  CAS  Google Scholar 

  • Thullier P, Demangel C, Bedouelle H, Megret F, Jouan A, Deubel V, Mazie JC, Lafaye P (2001) Mapping of a dengue virus neutralizing epitope crucial for infectivity of all serotypes: insight into the neutralization mechanism. J Gen Virol 82:1885–1892

    PubMed  CAS  Google Scholar 

  • Walker DL (1964) The viral carrier state in animal cell cultures. Progr Med Virol 7:111–118

    Google Scholar 

  • Westaway EG, Khromykh AA, Kenney MT, Mackenzie JM, Jones MK (1997a) Proteins C and NS4B of the Flavivirus kunjin translocate independently into the nucleus. Virology 234:31–41

    Article  CAS  Google Scholar 

  • Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997b) Ultrastructure of kunjin virus-infected cells: Colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ng, ML., Chu, JH. (2002). Interaction of West Nile and Kunjin Viruses with Cellular Components During Morphogenesis. In: Mackenzie, J.S., Barrett, A.D.T., Deubel, V. (eds) Japanese Encephalitis and West Nile Viruses. Current Topics in Microbiology and Immunology, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59403-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59403-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63966-1

  • Online ISBN: 978-3-642-59403-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics