Skip to main content

Replication and Gene Function in Kunjin Virus

  • Chapter
Book cover Japanese Encephalitis and West Nile Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 267))

Abstract

Kunjin virus has for many years provided a useful model system for study of replication of Flaviviruses. A very close antigenic relationship between KUN virus strain MRM61C and West Nile (WN) virus strain Sarafend, both within the Japanese encephalitis (JE) virus antigenic group, was established previously by plaque neutralization tests (Westaway 1965), and by haemagglutination-inhibition tests in which IgM antibodies were required for specific diagnosis (Westaway 1968). KUN virus is distributed widely throughout Australia (see chapter by Hall et al., this volume) but in contrast to WN virus, it is very rarely isolated from man or associated with severe disease, and the genetic variation among many KUN virus isolates in Australia was estimated to be only about 1% (Mackenzie et al. 1994). The original sequence comparisons between KUN virus and WN virus (Wengler or Nigeria strain) indicated 79% nucleotide homology with 93% homology for deduced amino acid sequences (Cola et al. 1988). These data were adequate for separate Flavivirus species identity either according to the criterion specifying no more than 84% nucleotide sequence identity (Kuno et al. 1998) or by phylogenetic analysis of the amino acid sequences of NS5, the most conserved product (see Westaway and Blox 1997). However, the recent nucleotide sequence analysis of the WN virus New York (WN-NY99) strains involved in the 1999 epidemic of encephalitis in New York City established a very close phylogenetic relationship with KUN virus, especially in the highly conserved NS3 (99% amino acid identity) and NS5 genes (98.8% identity) (Jia et al. 1999; Lanciotti et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, Mackenzie JS, Hall RA (1995) Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206:49–56

    PubMed  CAS  Google Scholar 

  • Amberg SM, Rice CM (1999) Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73:8083–8094

    PubMed  CAS  Google Scholar 

  • Bartholomeusz AI, Wright PJ (1993) Synthesis of dengue virus RNA in vitro: initiation and the involvement of proteins NS3 and NS5. Arch Virol 128:111–121

    PubMed  CAS  Google Scholar 

  • Blackwell JL, Brinton MA (1997) Translation elongation factor-1 alpha interacts with the 3’ stem-loop region of West Nile virus genomic RNA. J Virol 71:6433–6444

    PubMed  CAS  Google Scholar 

  • Borowski P, Niebuhr A, Mueller O, Bretner M, Felczak K, Kulikowski T, Schmitz H (2001) Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme. J Virol 75:3220–3229

    PubMed  CAS  Google Scholar 

  • Boulton RW, Westaway EG (1977) Togavirus RNA: reversible effect of urea on genomes and absence of subgenomic viral RNA in Kunjin virus-infected cells. Arch Virol 55:201–208

    PubMed  CAS  Google Scholar 

  • Brinkworth RI, Fairlie DP, Leung D, Young PR (1999) Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol 80:1167–1177

    PubMed  CAS  Google Scholar 

  • Buckley A, Gaidamovich S, Turchinskaya A, Gould EA (1992) Monoclonal antibodies identify the NS5 yellow fever virus non-structural protein in the nuclei of infected cells. J Gen Virol 73:1125–1130

    PubMed  CAS  Google Scholar 

  • Cahour A, Falgout B, Lai CJ (1992) Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J Virol 66:1535–1542

    PubMed  CAS  Google Scholar 

  • Castle E, Nowak T, Leidner U, Wengler G (1985) Sequence analysis of the viral core protein and the membrane-associated proteins VI and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236

    PubMed  CAS  Google Scholar 

  • Castle E, Leidner U, Nowak T, Wengler G (1986) Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology 149:10–26

    PubMed  CAS  Google Scholar 

  • Chang G-J (1997) Molecular biology of dengue viruses. In: Gubler DJ, Kuno G (eds). Dengue and dengue hemorrhagic fever. CAB International, Wallingford, UK, pp 175–198

    Google Scholar 

  • Chen CJ, Kuo MD, Chien LJ, Hsu SL, Wang YM, Lin JH (1997) RNA-protein interactions: involvement of NS3, NS5, and 3’ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71:3466–3473

    PubMed  CAS  Google Scholar 

  • Chu PW, Westaway EG (1985) Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140: 68–79

    PubMed  CAS  Google Scholar 

  • Chu PW, Westaway EG (1987) Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157:330–337

    PubMed  CAS  Google Scholar 

  • Chu PW, Westaway EG (1992) Molecular and ultrastructural analysis of heavy membrane fractions associated with the replication of Kunjin virus RNA. Arch Virol 125:177–191

    PubMed  CAS  Google Scholar 

  • Cleaves GR, Ryan TE, Schlesinger RW (1981) Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111:73–83

    PubMed  CAS  Google Scholar 

  • Coia G, Parker MD, Speight G, Byrne ME, Westaway EG (1988) Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol 69:1–21

    PubMed  CAS  Google Scholar 

  • Della-Porta AJ, Westaway EG (1977) Immune response in rabbits to virion and nonvirion antigens of the flavivirus Kunjin. Lifect Immun 15:874–882

    CAS  Google Scholar 

  • Falgout B, Markoff L (1995) Evidence that flavivirus NSI-NS2 A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69:7232–7243

    PubMed  CAS  Google Scholar 

  • Falgout B, Miller RH, Lai CJ (1993) Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol 67:2034–2042

    PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730

    PubMed  CAS  Google Scholar 

  • Grun JB, Brinton MA (1986) Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts. J Virol 60:1113–1124

    PubMed  CAS  Google Scholar 

  • Grun JB, Brinton MA (1987) Dissociation of NS5 from cell fractions containing West Nile virus-specific polymerase activity. J Virol 61:3641–3644

    PubMed  CAS  Google Scholar 

  • Guyatt KJ, Westaway EG, Khromykh AA (2001) Expression and purification of enzymatically active recombinant RNA- dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92:37–44

    PubMed  CAS  Google Scholar 

  • Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH (1987) Conserved elements in the 3’ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198: 33–41

    PubMed  CAS  Google Scholar 

  • Hall RA, Khromykh AA, Mackenzie JM, Scherret JH, Khromykh TI, Mackenzie JS (1999) Loss of dimerisation of the nonstructural protein NSI of Kunjin virus delays viral replication and reduces virulence in mice. but still allows secretion of NS1. Virology 264:66–75

    PubMed  CAS  Google Scholar 

  • Heinz FX, Allison SL (2000) Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231–269

    PubMed  CAS  Google Scholar 

  • Heinz FX, Collett MS, Purcell RH, Gould EA, Howard CR, Houghton M, Moormann RJM, Rice CM, Thiel H-J (2000) Family Flaviviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB, (eds) Virus Taxonomy. Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, London, pp 859–878

    Google Scholar 

  • Jia XY, Briese T, Jordan I, Rambaut A, Chi HC, Mackenzie JS, Hall RA, Scherret J, Lipkin WI (1999) Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354:1971–1972

    PubMed  CAS  Google Scholar 

  • Khromykh AA (2000) Replicon-based vectors of positive strand RNA viruses. Current Opinion in Molecular Therapeutics 2:555–569

    CAS  Google Scholar 

  • Khromykh AA, Westaway EG (1994) Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J Virol 68:4580–4588

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Westaway EG (1996) RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141:685–699

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Westaway EG (1997) Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Kenney MT, Westaway EG (1998) trans-Complementation of flavivirus RNA poly- merase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72:7270–7279

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Sedlak PL, Guyatt KJ, Hall RA, Westaway EG (1999a) Efficient trans-complementation of the flavivirus Kunjin NS5 protein but not of the NSI protein requires its coexpression with other components of the viral replicase. J Virol 73:10272–10280

    CAS  Google Scholar 

  • Khromykh AA, Sedlak PL, Westaway EG (1999b) trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol 73:9247–9255

    CAS  Google Scholar 

  • Khromykh AA, Sedlak PL, Westaway EG (2000) cis-and trans-acting elements in flavivirus RNA replication. J Virol 74:3253–3263

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Meka H, Guyatt KJ, Westaway EG (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728

    PubMed  CAS  Google Scholar 

  • Koonin EV (1993) Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol 74:733–740

    PubMed  CAS  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    PubMed  CAS  Google Scholar 

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72:73–83

    PubMed  CAS  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337

    PubMed  CAS  Google Scholar 

  • Lee E, Stocks CE, Amberg SM, Rice CM, Lobigs M (2000) Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. J Virol 74:24–32

    PubMed  CAS  Google Scholar 

  • Li H, Clum S, You S, Ebner KE, Padmanabhan R (1999) The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73:3108–3116

    PubMed  CAS  Google Scholar 

  • Lin C, Amberg SM, Chambers TJ, Rice CM (1993) Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J Virol 67:2327–2335

    PubMed  CAS  Google Scholar 

  • Lindenbach BD, Rice CM (1997) trans-Complementation of yellow fever virus NSI reveals a role in early RNA replication. J Virol 71:9608–9617

    PubMed  CAS  Google Scholar 

  • Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621

    PubMed  CAS  Google Scholar 

  • Mackenzie JS, Lindsay MD, Coelen RJ, Broom AK, Hall RA, Smith DW (1994) Arboviruses causing human disease in the Australasian zoogeographic region. Arch Virol 136:447–467

    PubMed  CAS  Google Scholar 

  • Mackenzie JM, Jones MK, Young PR (1996) Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–240

    PubMed  CAS  Google Scholar 

  • Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215

    PubMed  CAS  Google Scholar 

  • Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirusinfected cells. J Virol 73:9555–9567

    PubMed  CAS  Google Scholar 

  • Mackenzie JM, Khromykh AA, Westaway EG (2001) Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279:161–172

    PubMed  CAS  Google Scholar 

  • Murphy FA (1980) Morphology and morphogenesis. In: Monath TP (ed). St. Louis Encephalitis. American Public Health Association Inc., Washington DC, pp 65–103

    Google Scholar 

  • Murthy HMK, Clum S, Padmanabhan R (1999) Dengue virus NS3 serine protease: crystal structure and insights into interaction of the active site with substrates by molecular modelling and structural analysis of mutational effects. J Biol Chem 274:5573–5580

    PubMed  CAS  Google Scholar 

  • Muylaert IR, Galler R, Rice CM (1997) Genetic analysis of the yellow fever virus NS1 protein: identi-fication of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71:291–298

    PubMed  CAS  Google Scholar 

  • Ng ML, Hong SS (1989) Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 protein with microtubules. Arch Virol 106:103–120

    PubMed  CAS  Google Scholar 

  • Ng ML, Pedersen JS, Toh BH, Westaway EG (1983) Immunofluorescent sites in Vero cells infected with the flavivirus Kunjin. Arch Virol 78:177–190

    PubMed  CAS  Google Scholar 

  • Nowak T, Wengler G (1987) Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology 156:127–137

    PubMed  CAS  Google Scholar 

  • Nowak T, Farber PM, Wengler G (1989) Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169:365–376

    PubMed  CAS  Google Scholar 

  • Pethel M, Falgout B, Lai CJ (1992) Mutational analysis of the octapeptide sequence motif at the NSI-NS2. A cleavage junction of dengue type 4 virus. J Virol 66:7225–7231

    PubMed  CAS  Google Scholar 

  • Pryor MJ, Wright PJ (1994) Glycosylation mutants of dengue virus NS1 protein. J Gen Virol 75: 1183–1187

    PubMed  CAS  Google Scholar 

  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2A resolution. Nature 375:291–298

    PubMed  CAS  Google Scholar 

  • Rice CM (1996) Flaviviridae: the viruses and their replication. In: Fields BN, Knipe DN. Howley PM. Chanock RM, Melnick JL, Monath TP (eds) Virology, 3rd edn. Philadelphia, Lippincott-Raven, pp 931–959

    Google Scholar 

  • Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733

    PubMed  CAS  Google Scholar 

  • Rice CM, Aebersold R, Teplow DB, Pata J, Bell JR, Vorndam AV, Trent DW, Brandriss MW, Schlesinger JJ, Strauss JH (1986) Partial N-terminal amino acid sequences of three nonstructural proteins of two fiaviviruses. Virology 151:1–9

    PubMed  CAS  Google Scholar 

  • Schrader AP, Westaway EG (1988) Translation mapping with the flavivirus Kunjin: gene order and anomalies in translation of NS5. Virus Res 9:323–333

    PubMed  CAS  Google Scholar 

  • Schrader AP, Westaway EG (1990) Successful competition in translation by the flavivirus Kunjin with poliovirus during co-infections in Vero cells. Arch Virol 114:75–89

    PubMed  CAS  Google Scholar 

  • Shi PY, Brinton MA, Veal JM, Zhong YY, Wilson WD (1996) Evidence for the existence of a pseudoknot structure at the 3’ terminus of the flavivirus genomic RNA. Biochemistry 35:4222–4230

    PubMed  CAS  Google Scholar 

  • Speight G, Westaway EG (1989a) Carboxy-terminal analysis of nine proteins specified by the flavivirus Kunjin: evidence that only the intracellular core protein is truncated. J Gen Virol 70:2209–2214

    CAS  Google Scholar 

  • Speight G, Westaway EG (1989b) Positive identification of NS4 A, the last of the hypothetical nonstructural proteins of fiaviviruses. Virology 170:299–301

    CAS  Google Scholar 

  • Speight G, Coia G, Parker MD, Westaway EG (1988) Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. J Gen Virol 69:23–34

    PubMed  CAS  Google Scholar 

  • Steffens S, Thiel HJ, Behrens SE (1999) The RNA-dependent RNA polymerises of different members of the family Flaviviridae exhibit similar properties in vitro. J Gen Virol 80:2583–2590

    PubMed  CAS  Google Scholar 

  • Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH (1996) Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216:317–325

    PubMed  CAS  Google Scholar 

  • van der Most RG, Corver J, Strauss JH (1999) Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology 265:83–95

    PubMed  Google Scholar 

  • Varnayski AN, Khromykh AA (1999) Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 255:366–375

    Google Scholar 

  • Varnayski AN, Young PR, Khromykh AA (2000) Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 74:4394–4403

    Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membrane Biol. 115:195–201

    Google Scholar 

  • Wengler G, Castle E (1986) Analysis of structural properties which possibly are characteristic for the 3’-terminal sequence of the genome RNA of fiaviviruses. J Gen Virol 67:1183–1188

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G (1991) The carboxy-terminal part of the NS3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 184:707–715

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G (1993) The NS3 nonstructural protein of fiaviviruses contains an RNA triphosphatase activity. Virology 197:265–273

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G, Gross HJ (1978) Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with fiaviviruses. Virology 89:423–437

    PubMed  CAS  Google Scholar 

  • Wengler G, Beato M, Wengler G (1979) In vitro translation of 42S virus-specific RNA from cells infected with the flavivirus West Nile virus. Virology 96:516–529.

    PubMed  CAS  Google Scholar 

  • Wengler G, Castle E, Leidner U, Nowak T (1985) Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274

    PubMed  CAS  Google Scholar 

  • Wengler G, Nowak T, Castle E (1990) Description of a procedure which allows isolation of viral nonstructural proteins from BHK vertebrate cells infected with the West Nile flavivirus in a state which allows their direct chemical characterization. Virology 177:795–801

    PubMed  CAS  Google Scholar 

  • Wengler G, Czaya G, Farber PM, Hegemann JH (1991) In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. J Gen Virol 72:851–858

    PubMed  CAS  Google Scholar 

  • Westaway EG (1965) The neutralization of arboviruses. II. Neutralization in heterologous virus-serum mixtures with four group B arboviruses. Virology 26:528–537

    PubMed  CAS  Google Scholar 

  • Westaway EG (1968) Greater specificity of 19S than 7S antibodies on haemagglutination-inhibition tests with closely related group B arboviruses. Nature 219:78–79

    PubMed  CAS  Google Scholar 

  • Westaway EG (1973) Proteins specified by group B togaviruses in mammalian cells during productive infections. Virology 51:454–465

    PubMed  CAS  Google Scholar 

  • Westaway EG (1977) Strategy of the flavivirus genome: evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells. Virology 80:320–335

    PubMed  CAS  Google Scholar 

  • Westaway EG (1980). Replication of flaviviruses. In: Schlesinger RW (ed). Togaviruses. Academic Press, New York, pp 531–581

    Google Scholar 

  • Westaway EG (1987) Flavivirus replication strategy. Adv Virus Res 33:45–90

    PubMed  CAS  Google Scholar 

  • Westaway EG, Reedman BM (1969) Proteins of the group B arbovirus Kunjin. J Virol 4:688–693

    PubMed  CAS  Google Scholar 

  • Westaway EG, Goodman MR (1987) Variation in distribution of the three flavivirus-specified glyco-proteins detected by immunofluorescence in infected Vero cells. Arch Virol 94:215–228

    PubMed  CAS  Google Scholar 

  • Westaway EG, Blok J (1997). Taxonomy and evoluntionary relationships of flaviviruses. In: Gubler DJ, Kono G (eds). Dengue and dengue hemorrhagic fever. CAB International, Wallingford, UK, pp 145–171

    Google Scholar 

  • Westaway EG, Shew M, Della-Porta AJ (1975) Reactions of purified hemagglutinating antigens of flaviviruses with 19S and 7S antibodies. Infect Immun 11:630–634

    PubMed  CAS  Google Scholar 

  • Westaway EG, Khromykh AA, Kenney MT, Mackenzie JM, Jones MK (1997a) Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234:31–41

    CAS  Google Scholar 

  • Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997b) Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661

    CAS  Google Scholar 

  • Westaway EG, Khromykh AA, Mackenzie JM (1999) Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology 258:108–117

    PubMed  CAS  Google Scholar 

  • Wright PJ (1982) Envelope protein of the flavivirus Kunjin is apparently not glycosylated. J Gen Virol 59:29–38

    PubMed  CAS  Google Scholar 

  • Wright PJ, Westaway EG (1977) Comparisons of the peptide maps of Kunjin virus proteins smaller than the envelope protein. J Virol 24:662–672

    PubMed  CAS  Google Scholar 

  • Wright PJ, Bowden DS, Westaway EG (1977) Unique peptide maps of the three largest proteins specified by the flavivirus Kunjin. J Virol 24:651–6661

    PubMed  CAS  Google Scholar 

  • Wright PJ, Warr HM, Westaway EG (1980) Preliminary characterization of glycopeptides derived from glycoproteins specified by the flavivirus Kunjin. Virology 104:482–486

    PubMed  CAS  Google Scholar 

  • Yamshchikov VF, Compans RW (1994) Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. J Virol 68:5765–5771

    PubMed  CAS  Google Scholar 

  • You S, Padmanabhan R (1999) A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3’-end of exogenous viral RNA templates requires 5’- and 3’-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722

    PubMed  CAS  Google Scholar 

  • Zhang L, Mohan PM, Padmanabhan R (1992) Processing and localization of dengue virus type 2 polyprotein precursor NS3–NS4A-NS4B-NS5. J Virol 66:7549–7554

    PubMed  CAS  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics of RNA secondary structure prediction: A practical guide. In: Barciszewski J, Clark BFC (eds). RNA biochemistry and biotechnology. Kluwer Academic Publishers. pp 11–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westaway, E.G., Mackenzie, J.M., Khromykh, A.A. (2002). Replication and Gene Function in Kunjin Virus. In: Mackenzie, J.S., Barrett, A.D.T., Deubel, V. (eds) Japanese Encephalitis and West Nile Viruses. Current Topics in Microbiology and Immunology, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59403-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59403-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63966-1

  • Online ISBN: 978-3-642-59403-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics