Skip to main content

Physiologie und Pathophysiologie der neurodestruktiven Schmerztherapie

  • Chapter
Neurodestruktive Verfahren in der Schmerztherapie

Zusammenfassung

Noch beim Heidelberger Kongress der Deutschen Gesellschaft für Neurochirurgie 1975 [31] gehörte die neurodestruktive Schmerztherapie zum häufig und selbstverständlich eingesetzten Arsenal der Schmerztherapie — mangels Alternativen, die seither in großer Vielfalt in die Schmerztherapie eingeführt wurden. In Deutschland gab es damals weder eine medikamentöse Therapie chronischer Schmerzen noch eine Psycho- und Verhaltenstherapie; Nervenblockaden, Stimulationsverfahren und Akupunktur standen am Anfang ihrer Verbreitung. Bei dem Kongress wurden in 17 Plenarvorträgen die Ergebnisse neurodestruktiver Verfahren der Schmerzbekämpfung dargestellt, von vielen Varianten der Trigeminusoperation bis zur Hypophysektomie und stereotaktischen Großhirnoperationen, nur 5 Vorträge befassten sich mit der im Jahr zuvor in Deutschland eingeführten Rückenmarkstimulation. Die Erfolgsraten von Chordotomien und Thalamotomien lagen bei 90 bis 99% „schmerzfreien“ Patienten, wobei sich diese Bewertung meistens auf den Entlassungsbefund stützte. Über Misserfolge wurde kaum berichtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Azkue JJ, Zimmermann M, Hsieh TF, Herdegen T (1998) Peripheral nerve insult induces NMDA receptor-mediated, delayed degeneration in spinal neurons. Eur J Neurosci 10: 2204–2206

    Article  PubMed  CAS  Google Scholar 

  2. Baron R (2000) Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain 16 (Suppl): S12–20

    Article  PubMed  CAS  Google Scholar 

  3. Bennett GJ (1994) Animal models of neuropathic pain. In: Gebhart GF, Hammond DL, Jensen DS (eds) Proceedings of the 7th World Congress on Pain. Progress in pain research and management, vol 2. IASP, Seattle, pp 495–510

    Google Scholar 

  4. Blottner D, Baumgarten HG (1994) Neurotrophy and regeneration in vivo. Acta Anat (Basel) 150: 235–245

    Article  CAS  Google Scholar 

  5. Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity and immunology. Muscle Nerve Suppl 6: 146–168

    Article  Google Scholar 

  6. Cajal, Ramon y (1959) Degeneration and regeneration in the nervous system. Nachdruck der Ausgabe von 1928. Hafner, New York

    Google Scholar 

  7. Casey KL (2000) Concepts of pain mechanisms: the contribution of functional imaging of the brain. In: Sandkühler J, Bromm B, Gebhart GF (eds) Progress in brain research, vol. 129. Elsevier, Amsterdam, pp 277–287

    Google Scholar 

  8. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central plasticity to pathological pain: review of clinical and experimental evidence. Pain 52: 259–285

    Article  PubMed  CAS  Google Scholar 

  9. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85: 41–50

    Article  PubMed  CAS  Google Scholar 

  10. Devor M (1994) The pathophysiology of damaged peripheral nerves. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh London New York, pp 79–101

    Google Scholar 

  11. Dodt HU, Forke D, Zimmermann M (1983) Persisting selective block of unmyelinated fibers in cutaneous nerves of the cat by distilled water. Neurosci Lett 35: 203–207

    Article  PubMed  CAS  Google Scholar 

  12. Dodt HU, Strichartz GR, Zimmermann M (1983) Phenol solutions differentially block conduction in cutaneous nerve fibers of the cat. Neurosci Lett 42: 323–327

    Article  PubMed  CAS  Google Scholar 

  13. Empl M, Renaud S, Erne B, Fuhr P, Straube A, Schaeren-Wiemers N, Steck AJ (2001) TNF alpha expression in painful and nonpainful neuropathies. Neurology 56: 1371–1377

    PubMed  CAS  Google Scholar 

  14. England JD, Happel LT, Kline DG, Gamboni F, Thouron CL, Liu ZP, Levinson SR (1996) Sodium channel accumulation in humans with painful neuromas. Neurology 47: 272–276

    PubMed  CAS  Google Scholar 

  15. Fazakerley JK, Allsopp TE (2001) Programmed cell death in virus infections of the nervous system. In: Gosztonyi G (ed) The Mechanisms of Neuronal Damage in Virus Infections of the Nervous System. Current Topics in Microbiology and Immunology, vol. 253, Springer, Berlin, pp 95–119

    Google Scholar 

  16. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375: 482–484

    Article  PubMed  CAS  Google Scholar 

  17. Foerster O (ed) (1927) Die Leitungsbahnen des Schmerzgefühls and die chirurgische Behandlung der Schmerzzustände. Urban & Schwarzenberg, Berl in Wien

    Google Scholar 

  18. Foster L, Clapp L, Erickson M, Jabbari B (2001) Botulinum toxin A and chronic low back pain: a randomized, double-blind study. Neurology 56: 1290–1293

    PubMed  CAS  Google Scholar 

  19. Freund B, Schwartz M, Symington JM (2000) Botulinum toxin: new treatment for temporomandibular disorders. Br J Oral Maxillofac Surg 5: 466–471

    Article  Google Scholar 

  20. Gillardon F, Klimaschewski L, Wickert H, Krajewski S, Reed JC, Zimmermann M (1996) Expression pattern of candidate cell death effector proteins Box, Bd-2, Bd-X, and c-Jun in sensory and motor neurons following sciatic nerve transection in the rat. Brain Res 739: 244–250

    Google Scholar 

  21. Hassler R (1960) Die zentralen Systeme des Schmerzes. Acta Neurochir (Wien) 8: 353–423

    Article  CAS  Google Scholar 

  22. Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREBIATF proteins. Brain Res Rev. 28: 370–490

    Google Scholar 

  23. Huber AB, Schwab ME (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381: 407–419

    Article  PubMed  CAS  Google Scholar 

  24. Jänig W (1993) Sympathikus and Schmerz: Ideen, Hypothesen, Modelle. Der Schmerz 7: 226–240

    Article  PubMed  Google Scholar 

  25. Jänig W, Schmidt RF (eds) (1992) Reflex sympathetic dystrophy: Pathophysiological mechanisms and clinical implications. VCH, Weinheim

    Google Scholar 

  26. Ji R-R, Woolf CL (2001) Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiology of Disease 8: 1–10

    Article  PubMed  CAS  Google Scholar 

  27. Karplus IP, Kreidl A (1925) Zur Kenntnis der Schmerzleitung im Rückenmark, II. Mitteilung. Pflügers Arch Ges Physiol 207: 134–139

    Google Scholar 

  28. Klumpp D, Zimmermann M (1980) Irreversible differential block of A- and C-fibres following local nerve heating in the cat. J Physiol (Lond) 298: 471–482

    CAS  Google Scholar 

  29. Mao J, Price CD, Mayer DJ (1995) Experimental mononeuropathy reduces the antinociceptive effects of morphine: implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain. Pain 61: 353–364

    Article  PubMed  CAS  Google Scholar 

  30. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical brain stimulation. Brain 60: 389

    Article  Google Scholar 

  31. Penzholz H, Brock M, Hamer J, Klinger M, Spoerri O (eds) (1975) Brain Hypoxia Pain. Advances in Neurosurgery, vol 3. Springer, Heidelberg

    Google Scholar 

  32. Raciborska DA, Charlton MP (1999) Retention of cleaved synaptosome-associated protein of 25 kDa (SNAP-25) in neuromuscular junctions: a new hypothesis to explain persistence of botulinum A poisoning. Can J Physiol Pharmacol 9: 679–688

    Article  Google Scholar 

  33. Rydh-Rinder M, Berge OG, Hokfelt T (2001) Antinociceptive effects after intrathecal administration of phosphodiester-, 2’-O-allyl-and C-5-propyne-modified antisense oligodeoxynucleotides targeting the NMDARI subunit in mouse. Brain Res Mol Brain Res 86: 23–33

    Article  PubMed  CAS  Google Scholar 

  34. Sandkühler J, Liu X-G (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10: 2476–2480

    Article  PubMed  Google Scholar 

  35. Seltze Z, Wu T, Max MB, Diehl SR (2001) Mapping a gene for neuropathic pain-related behavior following peripheral neurectomy in the mouse. Pain 93: 101–106

    Article  Google Scholar 

  36. Shir Y, Sheth R, Campbell JN, Raja SN, Seltzer Z (2001 a) Soy-containing diet suppresses chronic neuropathic sensory disorders in rats. Anesth Analg 92: 1029–1034

    Google Scholar 

  37. Siegfried J, Zimmermann M (eds) (1981) Phantom and Stump Pain. Springer, Heidelberg, PP 185

    Google Scholar 

  38. Sommer C, Petrausch S, Lindenlaub T, Toyka TV (1999) Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci Lett 270: 25–28

    Article  PubMed  CAS  Google Scholar 

  39. Sommer C, Schmidt C, George A (1998) Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol 151: 138–142

    Article  PubMed  CAS  Google Scholar 

  40. Sorkin LS, Doom CM (2000) Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J Peripher Nery Syst 5: 96–100

    Article  CAS  Google Scholar 

  41. Stanton-Hicks M (2000) Complex regional pain syndrome (type I, RSD; type II, causalgia): controversies. Clin J Pain 16 (Suppl): S33–40. Review

    Google Scholar 

  42. Vanegas H, Schaible HG (2001) Prostaglandins and cyclooxygenases in the spinal cord. Prog. Neurobiol 64: 327–363. Review

    Google Scholar 

  43. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7: 103–111

    Article  PubMed  CAS  Google Scholar 

  44. White DM, Zimmermann M (1988) The bradykinin-induced release of substance P from nerve fibre endings in the rat saphenous nerve neuroma is not related to electrophysiological excitation. Neurosci Lett 92: 108–113

    Article  PubMed  CAS  Google Scholar 

  45. Woolf CJ, Shortland P, Coggeshall, RE (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355: 75–78

    Article  PubMed  CAS  Google Scholar 

  46. Xie Y, Zhang J, Petersen M, LaMotte RH (1995) Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J Neurophysiol 73: 1811–1820

    PubMed  CAS  Google Scholar 

  47. Zaal MJW, Völker-Dieben HJ, D’Amaro J (2o0o) Risk and prognostic factors of postherpetic neuralgia and focal sensory denervation: a prospective evaluation in acute herpes zoster ophthalmicus. Clin J Pain 16: 345–351

    Google Scholar 

  48. Zimmermann M (1985) Functional characteristics of sensory fibres in regenerating cutaneous nerves. In: Delwaide PJ, Gorio A (eds) Clinical Neurophysiology in Peripheral Neuropathies. Elsevier, Amsterdam, pp 41–56

    Google Scholar 

  49. Zimmermann M (1991) Central nervous mechanisms modulating pain-related information: Do they become deficient after lesions of the peripheral or central nervous system? In: Casey KL (ed) Pain and Central Nervous System Disease: The Central Pain Syndrome. Raven Press, New York, pp 183–199

    Google Scholar 

  50. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol, in press

    Google Scholar 

  51. Zimmermann M, Herdegen T (1994) Control of gene transcription by Jun and Fos proteins in the nervous system–beneficial or harmful molecular mechanisms of neuronal response to noxious stimulation? Am Pain Soc J 3: 33–48

    Google Scholar 

  52. Zimmermann M, Herdegen T (1996) Plasticity of the nervous system at the systemic, cellular and molecular levels: a mechanism of chronic pain and hyperalgesia. In: Carli G, Zimmermann M (eds) Towards the Neurobiology of Chronic Pain. Progress in Brain Research, Vol. iio, Elsevier Science B.V., Amsterdam, pp 233–259

    Chapter  Google Scholar 

  53. Zimmermann M, Koschorke GM (1987) Chemosensitivity of nerve sprouts in experimental neuroma of cutaneous nerves of the cat. In: Schmidt RF, Schaible H-G, VahleHinz C (eds) Fine afferent nerve fibers and pain. VCH Verlagsgesellschaft, Weinheim, pp 105–113

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, M. (2002). Physiologie und Pathophysiologie der neurodestruktiven Schmerztherapie. In: Hankemeier, U.B., Hildebrandt, J. (eds) Neurodestruktive Verfahren in der Schmerztherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59376-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59376-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41922-8

  • Online ISBN: 978-3-642-59376-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics