Skip to main content

Neurogene Muskelveränderungen und -erkrankungen

  • Chapter
Neuropathologie
  • 127 Accesses

Zusammenfassung

Die Einflüsse des Nervensystems auf den Skelettmuskel sind vielfältig. Heredodegenerative Erkrankungen des peripheren und motorischen Neurons mit progressiver „spinaler“ oder „neuraler“ Muskelatrophie sind zu unterscheiden von nichthereditären, traumatischen, entzündlichen und anderen Schädigungen des peripheren motorischen Neurons. Auch Schädigungen des peripheren und zentralen Neurons oder nur des zentralen motorischen Neurons sowie des extrapyramidalmotorischen Systems bzw. übergeordneter Zentren der Tonusregulation bewirken Veränderungen im Muskel. Außerdem bleiben Störungen der sensorischen Afferenz, d.h. der peripheren und zentralen reflektorischen Kontrollmechanismen, nicht ohne Auswirkungen. Umgekehrt führen Muskelfasernekrosen und andere Veränderungen an den Muskelfasern selbst zu Rückwirkungen auf das Nervensystem, insbesondere auf die Nervenendigungen und die sog. terminale und ultraterminale Innervation. Schließlich kommt es bei Regenerations- und Reinnervationsvorgängen zu komplexen funktionellen und strukturellen Wechselwirkungen zwischen Nervensystem und Muskel, die noch nicht in allen Details aufgeklärt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Afifi AK, Rebeiz J, Mire J, Andonian J, Kaloustian VM (1972) The myopathology of the Prune belly syndrome. J Neurol Sci 15: 153–165

    Article  PubMed  CAS  Google Scholar 

  • Ashby P, Verrier M (1976) Neurophysiologic changes in hemiplegia. Possible explanation for the initial disparity between muscle tone and tendon reflexes. Neurology 26: 1145–1151

    Google Scholar 

  • Balaji KC, Patil A, Townes PL, Primack W, Skare J, Hopkins T (2000) Concordant prune belly syndrome in monozygotic twins. Urology (Online) 55: 949

    CAS  Google Scholar 

  • Beersiek F, Parks AG, Swash M (1979) Pathogenesis of anorectal incontinence. A histometric study of the anal sphincter musculature. J Neurol Sci 42: 111–127

    Google Scholar 

  • Black JT, Bhatt GP, Dejesus PV, Schotland DL, Rowland LP (1974) Diagnostic accuracy of clinical data, quantitative electromyography and histochemistry in neuromuscular disease. A study of 105 cases. J Neurol Sci 21: 59–70

    Article  PubMed  CAS  Google Scholar 

  • Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46: 787–790

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH (1977) A clinician’s view of neuromuscular diseases. Williams [and] Wilkins, Baltimore

    Google Scholar 

  • Bullen AJ, Eccles, JC, Eccles RM (1960) Interactions between motoneuronesand muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150: 417–439

    Google Scholar 

  • Chou SM, Han CY, Wang HS, Vlassara H, Bucala R (1999) A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study. J Neurol Sci 169: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Doyu M, Sobue G, Mukai E, Kachi T, Yasuda T, Mitsuma T, Takahashi A (1992) Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 32: 707–710

    Article  PubMed  CAS  Google Scholar 

  • Edström L (1970) Selective changes in the sizes of red and white muscle fibres in upper motor lesions and Parkinsonism. J Neurol Sci 11: 537–550

    Article  PubMed  Google Scholar 

  • Edström L, Grimby L (1986) Effect of exercise on the motor unit. Muscle Nerve 9: 104–126

    Article  PubMed  Google Scholar 

  • Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31: 424–433

    Article  PubMed  Google Scholar 

  • Emery AE (1971) The nosology of the spinal muscular atrophies. J Med Genet 8: 481–495

    Article  PubMed  CAS  Google Scholar 

  • Engel WK (1961) Muscle target fibers, a newly recognized sign of denervation. Nature 191: 389

    Article  PubMed  CAS  Google Scholar 

  • Engel AG (1994) Myasthenic syndromes. In: Engel u. Franzini-Armstrong (1994), vol 2, pp 1798–1835

    Google Scholar 

  • Engel AG, Franzini-Armstrong C (eds) (1994) Myology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Fidzianska A (1976) Morphological differences between the atrophied small muscle fibres in amyotrophic lateral sclerosis and Werdnig-Hoffmann disease. Acta Neuropathol (Berl) 34: 321–327

    Article  CAS  Google Scholar 

  • Gilliam TC, Brzustowicz LM, Castilla LH et al. (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345: 823–825

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, Shepherd RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34: 107–111

    PubMed  CAS  Google Scholar 

  • Gutmann E, Zelena J (1962) Morphological changes in denervated muscle. In: Gutmann E (ed) The denervated muscle. Czechoslovak Acad Sci, Prag, pp 57–102

    Google Scholar 

  • Hamilton MT, Booth FW (2000) Skeletal muscle adaptation to exercise: a century of progress. J Appl Physiol 88: 327–331

    PubMed  CAS  Google Scholar 

  • Ince PG, Tomkins J, Slade JY, Thatcher NM, Shaw PJ (1998) Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropathol Exp Neurol 57: 895–904

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Al-Chalabi A, Enayat ZE, Chioza B, Leigh PN, Morrison KE (1997) Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 42: 803–807

    Article  PubMed  CAS  Google Scholar 

  • Jennekens FG, Meijer AE, Bethlem J, Van Wijngaarden GK (1974) Fibre hybrids in type groups. An investigation of human muscle biopsies. J Neurol Sci 23: 337–352

    Article  PubMed  CAS  Google Scholar 

  • Kabakus N, Serhatlioglu S, Akfirat M, Kazez A, Aydinoglu H, Ozercan I, Aygun AD (2000) Prune-belly syndrome associated with extra-abdominal abnormalities in a 7-year-old boy. Turk J Pediatr 42: 158–161

    PubMed  CAS  Google Scholar 

  • Kaji R (2000) Facts and fancies on writer’s cramp (comment, editorial). Muscle Nerve 23: 1313–1315

    Article  PubMed  CAS  Google Scholar 

  • Karpati G, Engel WK (1968a) Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology 18: 681–692

    PubMed  CAS  Google Scholar 

  • Karpati G, Engel WK (1968b) „Type grouping in skeletal muscles after experimental reinnervation. Neurology 18: 447–455

    Google Scholar 

  • Kerkhoff H, Hassan SM, Troost D, Van Etten RW, Veldman H, Jennekens FG (1994) Insulin-like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 87: 411–421

    Article  CAS  Google Scholar 

  • Koskinen SO, Kjaer M, Mohr T, Sorensen FB, Suuronen T, Takala TE (2000) Type IV collagen and its degradation in paralyzed human muscle: effect of functional electrical stimulation. Muscle Nerve 23: 580–589

    Article  PubMed  CAS  Google Scholar 

  • Kurztke JF (1982) Epidemiologic of amyotrophic laterals- sclerosis. In: Rowland LP (ed) Human motor neuron disease. Raven, New York, pp 281–302

    Google Scholar 

  • Lindenberg R, Rubinstein LJ, Herman MM, Haydon GB (1968) A light and electron microscopy study of an unusual widespread nuclear inclusion body disease. A possible residuum of an old herpesvirus infection. Acta Neuropathol (Berl) 10: 54–73

    Article  CAS  Google Scholar 

  • Lorson CL, Strasswimmer J, Yao JM et al. (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19: 63–66

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58: 459–471

    Article  PubMed  CAS  Google Scholar 

  • Matsuura T, Demura T, Aimoto Y, Mizuno T, Moriwaka F, Tashiro K (1992) Androgen receptor abnormality in X- linked spinal and bulbar muscular atrophy. Neurology 42: 1724–1726

    PubMed  CAS  Google Scholar 

  • McComas AJ (1977) Neuromuscular function and disorders. Butterworths, London

    Google Scholar 

  • Meltzer HY, McBride E, Poppei RW (1973) Rod (nemaline) bodies in the skeletal muscle of an acute schizophrenic patient. Neurology 23: 769–780

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Rastogi S, Ellison J (1976) Quantitative histochemical evaluation of normal human skeletal muscle. Neurology 26: 849–852

    PubMed  CAS  Google Scholar 

  • Mittelbach F (1966) Die Begleitmyopathie bei neurogenen Atrophien. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nix WA, Reichmann H, Schroder MJ (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch rabbit muscle. Pflugers Arch 405: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Patten BM, Zito G, Harati Y (1979) Histologic findings in motor neuron disease. Relation to clinically determined activity, duration, and severity of disease. Arch Neurol 36: 560–564

    PubMed  CAS  Google Scholar 

  • Pellegrino CF, Franzini C (1963) An electron microscopic study of denervation atrophy inred and white skeletal muscle fibers. J Cell Biol 17: 327–349

    Article  PubMed  CAS  Google Scholar 

  • Pihko H, Lehtinen I, Tikkanen H et al. (1993) Progressive unilateral hypertrophic myopathy: a case study (see comments). Muscle Nerve 16: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Pongratz D (1976) Differentialdiagnose der Erkrankungen der Skelettmuskulatur an Hand von Muskelbiopsien. Enzymhistochemische und histometrische Untersuchungen zur besonderen Vulnerabilität der Typ-II-Fasern. Thieme, Stuttgart

    Google Scholar 

  • Rabin BA, Griffin JW, Crain BJ, Scavina M, Chance PF, Cornblath DR (1999) Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122: 1539–1550

    Article  PubMed  Google Scholar 

  • Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 2: 211–221

    Article  PubMed  CAS  Google Scholar 

  • Rouleau GA, Clark AW, Rooke K et al. (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein N, Mabuchi K, Pepe F, Salmons S, Gergely J, Sreter F (1978) Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol 79: 252–261

    Article  PubMed  CAS  Google Scholar 

  • Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201: 535–549

    CAS  Google Scholar 

  • Scharf JM, Endrizzi MG, Wetter A et al. (1998) Identification of a candidate modifying gene for spinal muscular. Nat Genet 20: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Schotland DL (1969) An electron microscopic study of target fibers, target-like fibers and related abnormalities in human muscle. J Neuropathol Exp Neurol 28: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schröder JM (1999) Pathologie peripherer Nerven. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Schröder JM, Krämer KG, Hopf HC (1985) Granular nuclear inclusion body disease: fine structure of tibial muscle and sural nerve. Muscle Nerve 8: 52–59

    Article  PubMed  Google Scholar 

  • Shaw CE, Enayat ZE, Chioza BA, Al-Chalabi A, Radunovic A, Powell JF, Leigh PN (1998) Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 43: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Shimada N, Sobue G, Doyu M et al. (1995) X-linked recessive bulbospinal neuronopathy: clinical phenotypes and CAG repeat size in androgen receptor gene. Muscle Nerve 18: 1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Hosokawa S, Tohda A, Matsumoto F, Johnin K (2000) Histology of the fetal prune belly syndrome with reference to the efficacy of prenatal decompression. Int J Urol 7: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Staudte HW, Brussatis F (1977) Selective changes in size and distribution of fibre types in vastus muscle from cases of different knee joint affections. Z Rheumatol 36: 143–160

    PubMed  CAS  Google Scholar 

  • Stonnington HH, Engel AG (1973) Normal and denervated muscle. A morphometric study of fine structure. Neurology 23: 714–724

    PubMed  CAS  Google Scholar 

  • Swash M, Schwartz MS (1992) What do we really know about amyotrophic lateral sclerosis? J Neurol Sci 113: 4–16

    Article  PubMed  CAS  Google Scholar 

  • Talmadge RJ, Roy RR, Edgerton VR (1999) Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Ree 255: 188–201

    Article  CAS  Google Scholar 

  • Thomas PK, Marques W Jr, Davis MB et al. (1997) The phenotypic manifestations of chromosome 17pll.2 duplication. Brain 120: 465–478

    Article  PubMed  Google Scholar 

  • Towfighi J, Marks K, Palmer E, Vannucci R (1979) Möbius syndrome. Neuropathologic observations. Acta Neuropathol (Berl) 48: 11–17

    Article  CAS  Google Scholar 

  • Trotti D, Rolfs A, Danbolt NC, Brown RH Jr., Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Ueyama H, Kumamoto T, Fujimoto S, Murakami T, Tsuda T (1998) Expression of three calpain isoform genes in human skeletal muscles. J Neurol Sci 155: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Uncini A, Di Muzio A, Chiavaroli F et al. (1994) Hereditary motor and sensory neuropathy with calf hypertrophy is associated with 17pll.2 duplication. Ann Neurol 35: 552– 558

    Article  PubMed  CAS  Google Scholar 

  • Vielhaber S, Winkler K, Kirches E et al. (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 169: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Carter TA, Das K, Xu J, Ross BM, Penchaszadeh GK, Gilliam TC (1997) Extensive DNA deletion associated with severe disease alleles on spinal muscular atrophy homologues. Ann Neurol 42: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS- linked SOD1 mutants to motor neurons. Nat Neurosci 2: 50–56

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I (1997a) A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 146: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Wirth B, Rudnik-Schöneborn S (1997b) Spinal muscular atrophy - clinical and genetic correlations. Neuromusc Disord 7: 202–207

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Rudnik-Schöneborn S, Wirth B (1998) Proximale spinale Muskelatrophien. Dtsch Ärztebl 95: 1340–1347

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J.M. (2002). Neurogene Muskelveränderungen und -erkrankungen. In: Peiffer, J., Schröder, J.M., Paulus, W. (eds) Neuropathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59371-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59371-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63951-7

  • Online ISBN: 978-3-642-59371-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics