Advertisement

Neurogene Muskelveränderungen und -erkrankungen

  • J. M. Schröder

Zusammenfassung

Die Einflüsse des Nervensystems auf den Skelettmuskel sind vielfältig. Heredodegenerative Erkrankungen des peripheren und motorischen Neurons mit progressiver „spinaler“ oder „neuraler“ Muskelatrophie sind zu unterscheiden von nichthereditären, traumatischen, entzündlichen und anderen Schädigungen des peripheren motorischen Neurons. Auch Schädigungen des peripheren und zentralen Neurons oder nur des zentralen motorischen Neurons sowie des extrapyramidalmotorischen Systems bzw. übergeordneter Zentren der Tonusregulation bewirken Veränderungen im Muskel. Außerdem bleiben Störungen der sensorischen Afferenz, d.h. der peripheren und zentralen reflektorischen Kontrollmechanismen, nicht ohne Auswirkungen. Umgekehrt führen Muskelfasernekrosen und andere Veränderungen an den Muskelfasern selbst zu Rückwirkungen auf das Nervensystem, insbesondere auf die Nervenendigungen und die sog. terminale und ultraterminale Innervation. Schließlich kommt es bei Regenerations- und Reinnervationsvorgängen zu komplexen funktionellen und strukturellen Wechselwirkungen zwischen Nervensystem und Muskel, die noch nicht in allen Details aufgeklärt sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Afifi AK, Rebeiz J, Mire J, Andonian J, Kaloustian VM (1972) The myopathology of the Prune belly syndrome. J Neurol Sci 15: 153–165PubMedCrossRefGoogle Scholar
  2. Ashby P, Verrier M (1976) Neurophysiologic changes in hemiplegia. Possible explanation for the initial disparity between muscle tone and tendon reflexes. Neurology 26: 1145–1151Google Scholar
  3. Balaji KC, Patil A, Townes PL, Primack W, Skare J, Hopkins T (2000) Concordant prune belly syndrome in monozygotic twins. Urology (Online) 55: 949Google Scholar
  4. Beersiek F, Parks AG, Swash M (1979) Pathogenesis of anorectal incontinence. A histometric study of the anal sphincter musculature. J Neurol Sci 42: 111–127Google Scholar
  5. Black JT, Bhatt GP, Dejesus PV, Schotland DL, Rowland LP (1974) Diagnostic accuracy of clinical data, quantitative electromyography and histochemistry in neuromuscular disease. A study of 105 cases. J Neurol Sci 21: 59–70PubMedCrossRefGoogle Scholar
  6. Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46: 787–790PubMedCrossRefGoogle Scholar
  7. Brooke MH (1977) A clinician’s view of neuromuscular diseases. Williams [and] Wilkins, BaltimoreGoogle Scholar
  8. Bullen AJ, Eccles, JC, Eccles RM (1960) Interactions between motoneuronesand muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150: 417–439Google Scholar
  9. Chou SM, Han CY, Wang HS, Vlassara H, Bucala R (1999) A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study. J Neurol Sci 169: 87–92PubMedCrossRefGoogle Scholar
  10. Doyu M, Sobue G, Mukai E, Kachi T, Yasuda T, Mitsuma T, Takahashi A (1992) Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 32: 707–710PubMedCrossRefGoogle Scholar
  11. Edström L (1970) Selective changes in the sizes of red and white muscle fibres in upper motor lesions and Parkinsonism. J Neurol Sci 11: 537–550PubMedCrossRefGoogle Scholar
  12. Edström L, Grimby L (1986) Effect of exercise on the motor unit. Muscle Nerve 9: 104–126PubMedCrossRefGoogle Scholar
  13. Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31: 424–433PubMedCrossRefGoogle Scholar
  14. Emery AE (1971) The nosology of the spinal muscular atrophies. J Med Genet 8: 481–495PubMedCrossRefGoogle Scholar
  15. Engel WK (1961) Muscle target fibers, a newly recognized sign of denervation. Nature 191: 389PubMedCrossRefGoogle Scholar
  16. Engel AG (1994) Myasthenic syndromes. In: Engel u. Franzini-Armstrong (1994), vol 2, pp 1798–1835Google Scholar
  17. Engel AG, Franzini-Armstrong C (eds) (1994) Myology, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  18. Fidzianska A (1976) Morphological differences between the atrophied small muscle fibres in amyotrophic lateral sclerosis and Werdnig-Hoffmann disease. Acta Neuropathol (Berl) 34: 321–327CrossRefGoogle Scholar
  19. Gilliam TC, Brzustowicz LM, Castilla LH et al. (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345: 823–825PubMedCrossRefGoogle Scholar
  20. Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, Shepherd RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34: 107–111PubMedGoogle Scholar
  21. Gutmann E, Zelena J (1962) Morphological changes in denervated muscle. In: Gutmann E (ed) The denervated muscle. Czechoslovak Acad Sci, Prag, pp 57–102Google Scholar
  22. Hamilton MT, Booth FW (2000) Skeletal muscle adaptation to exercise: a century of progress. J Appl Physiol 88: 327–331PubMedGoogle Scholar
  23. Ince PG, Tomkins J, Slade JY, Thatcher NM, Shaw PJ (1998) Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropathol Exp Neurol 57: 895–904PubMedCrossRefGoogle Scholar
  24. Jackson M, Al-Chalabi A, Enayat ZE, Chioza B, Leigh PN, Morrison KE (1997) Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 42: 803–807PubMedCrossRefGoogle Scholar
  25. Jennekens FG, Meijer AE, Bethlem J, Van Wijngaarden GK (1974) Fibre hybrids in type groups. An investigation of human muscle biopsies. J Neurol Sci 23: 337–352PubMedCrossRefGoogle Scholar
  26. Kabakus N, Serhatlioglu S, Akfirat M, Kazez A, Aydinoglu H, Ozercan I, Aygun AD (2000) Prune-belly syndrome associated with extra-abdominal abnormalities in a 7-year-old boy. Turk J Pediatr 42: 158–161PubMedGoogle Scholar
  27. Kaji R (2000) Facts and fancies on writer’s cramp (comment, editorial). Muscle Nerve 23: 1313–1315PubMedCrossRefGoogle Scholar
  28. Karpati G, Engel WK (1968a) Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology 18: 681–692PubMedGoogle Scholar
  29. Karpati G, Engel WK (1968b) „Type grouping in skeletal muscles after experimental reinnervation. Neurology 18: 447–455Google Scholar
  30. Kerkhoff H, Hassan SM, Troost D, Van Etten RW, Veldman H, Jennekens FG (1994) Insulin-like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 87: 411–421CrossRefGoogle Scholar
  31. Koskinen SO, Kjaer M, Mohr T, Sorensen FB, Suuronen T, Takala TE (2000) Type IV collagen and its degradation in paralyzed human muscle: effect of functional electrical stimulation. Muscle Nerve 23: 580–589PubMedCrossRefGoogle Scholar
  32. Kurztke JF (1982) Epidemiologic of amyotrophic laterals- sclerosis. In: Rowland LP (ed) Human motor neuron disease. Raven, New York, pp 281–302Google Scholar
  33. Lindenberg R, Rubinstein LJ, Herman MM, Haydon GB (1968) A light and electron microscopy study of an unusual widespread nuclear inclusion body disease. A possible residuum of an old herpesvirus infection. Acta Neuropathol (Berl) 10: 54–73CrossRefGoogle Scholar
  34. Lorson CL, Strasswimmer J, Yao JM et al. (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19: 63–66PubMedCrossRefGoogle Scholar
  35. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58: 459–471PubMedCrossRefGoogle Scholar
  36. Matsuura T, Demura T, Aimoto Y, Mizuno T, Moriwaka F, Tashiro K (1992) Androgen receptor abnormality in X- linked spinal and bulbar muscular atrophy. Neurology 42: 1724–1726PubMedGoogle Scholar
  37. McComas AJ (1977) Neuromuscular function and disorders. Butterworths, LondonGoogle Scholar
  38. Meltzer HY, McBride E, Poppei RW (1973) Rod (nemaline) bodies in the skeletal muscle of an acute schizophrenic patient. Neurology 23: 769–780PubMedGoogle Scholar
  39. Meltzer HY, Rastogi S, Ellison J (1976) Quantitative histochemical evaluation of normal human skeletal muscle. Neurology 26: 849–852PubMedGoogle Scholar
  40. Mittelbach F (1966) Die Begleitmyopathie bei neurogenen Atrophien. Springer, Berlin Heidelberg New YorkGoogle Scholar
  41. Nix WA, Reichmann H, Schroder MJ (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch rabbit muscle. Pflugers Arch 405: 141–147PubMedCrossRefGoogle Scholar
  42. Patten BM, Zito G, Harati Y (1979) Histologic findings in motor neuron disease. Relation to clinically determined activity, duration, and severity of disease. Arch Neurol 36: 560–564PubMedGoogle Scholar
  43. Pellegrino CF, Franzini C (1963) An electron microscopic study of denervation atrophy inred and white skeletal muscle fibers. J Cell Biol 17: 327–349PubMedCrossRefGoogle Scholar
  44. Pihko H, Lehtinen I, Tikkanen H et al. (1993) Progressive unilateral hypertrophic myopathy: a case study (see comments). Muscle Nerve 16: 63–68PubMedCrossRefGoogle Scholar
  45. Pongratz D (1976) Differentialdiagnose der Erkrankungen der Skelettmuskulatur an Hand von Muskelbiopsien. Enzymhistochemische und histometrische Untersuchungen zur besonderen Vulnerabilität der Typ-II-Fasern. Thieme, StuttgartGoogle Scholar
  46. Rabin BA, Griffin JW, Crain BJ, Scavina M, Chance PF, Cornblath DR (1999) Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122: 1539–1550PubMedCrossRefGoogle Scholar
  47. Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 2: 211–221PubMedCrossRefGoogle Scholar
  48. Rouleau GA, Clark AW, Rooke K et al. (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131PubMedCrossRefGoogle Scholar
  49. Rubinstein N, Mabuchi K, Pepe F, Salmons S, Gergely J, Sreter F (1978) Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol 79: 252–261PubMedCrossRefGoogle Scholar
  50. Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201: 535–549Google Scholar
  51. Scharf JM, Endrizzi MG, Wetter A et al. (1998) Identification of a candidate modifying gene for spinal muscular. Nat Genet 20: 83–86PubMedCrossRefGoogle Scholar
  52. Schotland DL (1969) An electron microscopic study of target fibers, target-like fibers and related abnormalities in human muscle. J Neuropathol Exp Neurol 28: 214–228PubMedCrossRefGoogle Scholar
  53. Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New YorkGoogle Scholar
  54. Schröder JM (1999) Pathologie peripherer Nerven. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  55. Schröder JM, Krämer KG, Hopf HC (1985) Granular nuclear inclusion body disease: fine structure of tibial muscle and sural nerve. Muscle Nerve 8: 52–59PubMedCrossRefGoogle Scholar
  56. Shaw CE, Enayat ZE, Chioza BA, Al-Chalabi A, Radunovic A, Powell JF, Leigh PN (1998) Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 43: 390–394PubMedCrossRefGoogle Scholar
  57. Shimada N, Sobue G, Doyu M et al. (1995) X-linked recessive bulbospinal neuronopathy: clinical phenotypes and CAG repeat size in androgen receptor gene. Muscle Nerve 18: 1378–1384PubMedCrossRefGoogle Scholar
  58. Shimada K, Hosokawa S, Tohda A, Matsumoto F, Johnin K (2000) Histology of the fetal prune belly syndrome with reference to the efficacy of prenatal decompression. Int J Urol 7: 161–166PubMedCrossRefGoogle Scholar
  59. Staudte HW, Brussatis F (1977) Selective changes in size and distribution of fibre types in vastus muscle from cases of different knee joint affections. Z Rheumatol 36: 143–160PubMedGoogle Scholar
  60. Stonnington HH, Engel AG (1973) Normal and denervated muscle. A morphometric study of fine structure. Neurology 23: 714–724PubMedGoogle Scholar
  61. Swash M, Schwartz MS (1992) What do we really know about amyotrophic lateral sclerosis? J Neurol Sci 113: 4–16PubMedCrossRefGoogle Scholar
  62. Talmadge RJ, Roy RR, Edgerton VR (1999) Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Ree 255: 188–201CrossRefGoogle Scholar
  63. Thomas PK, Marques W Jr, Davis MB et al. (1997) The phenotypic manifestations of chromosome 17pll.2 duplication. Brain 120: 465–478PubMedCrossRefGoogle Scholar
  64. Towfighi J, Marks K, Palmer E, Vannucci R (1979) Möbius syndrome. Neuropathologic observations. Acta Neuropathol (Berl) 48: 11–17CrossRefGoogle Scholar
  65. Trotti D, Rolfs A, Danbolt NC, Brown RH Jr., Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2: 427–433PubMedCrossRefGoogle Scholar
  66. Ueyama H, Kumamoto T, Fujimoto S, Murakami T, Tsuda T (1998) Expression of three calpain isoform genes in human skeletal muscles. J Neurol Sci 155: 163–169PubMedCrossRefGoogle Scholar
  67. Uncini A, Di Muzio A, Chiavaroli F et al. (1994) Hereditary motor and sensory neuropathy with calf hypertrophy is associated with 17pll.2 duplication. Ann Neurol 35: 552– 558PubMedCrossRefGoogle Scholar
  68. Vielhaber S, Winkler K, Kirches E et al. (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 169: 133–139PubMedCrossRefGoogle Scholar
  69. Wang CH, Carter TA, Das K, Xu J, Ross BM, Penchaszadeh GK, Gilliam TC (1997) Extensive DNA deletion associated with severe disease alleles on spinal muscular atrophy homologues. Ann Neurol 42: 41–49PubMedCrossRefGoogle Scholar
  70. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156: 65–72PubMedCrossRefGoogle Scholar
  71. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS- linked SOD1 mutants to motor neurons. Nat Neurosci 2: 50–56PubMedCrossRefGoogle Scholar
  72. Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I (1997a) A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 146: 67–72PubMedCrossRefGoogle Scholar
  73. Zerres K, Wirth B, Rudnik-Schöneborn S (1997b) Spinal muscular atrophy - clinical and genetic correlations. Neuromusc Disord 7: 202–207PubMedCrossRefGoogle Scholar
  74. Zerres K, Rudnik-Schöneborn S, Wirth B (1998) Proximale spinale Muskelatrophien. Dtsch Ärztebl 95: 1340–1347Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. M. Schröder

There are no affiliations available

Personalised recommendations