Advertisement

Anatomisch-physiologische Grundlagen und Technik der Gewebsentnahme

  • J. M. Schröder

Zusammenfassung

Das Gewicht der quergestreiften Muskulatur macht beim Erwachsenen etwa 40–45% des Körpergewichtes aus, beim Neugeborenen sind es etwa 24%. Beim Menschen lassen sich nicht weniger als 434 Muskeln zählen. Insgesamt soll es etwa 250 Mio. quergestreifte Muskelfasern im menschlichen Körper geben. Jede Muskelfaser ist eine große vielkernige Riesenzelle, deren Länge und Breite von einem Muskel zum anderen erheblich variieren kann. Die längste isolierte Muskelfaser aus dem längsten Muskel des Menschen, einem 52 cm langen M. sartorius, war 34 cm lang (Adams et al. 1965).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams R D, Denny-Brown D, Pearson C M (1965) Diseases of muscle. A Study in pathology, 2nd edn. Harper & Row, New YorkGoogle Scholar
  2. Barker D (1974) The morphology of muscle receptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III /2, pp 1–190 )Google Scholar
  3. Boyd I A, Davey M R (1968) Composition of peripheral nerves. Churchill Livingstone, EdinghurghGoogle Scholar
  4. Brooke M H, Kaiser K K (1974) Trophic functions of the neuron. II. Denervation and regulation of muscle. The use and abuse of muscle histochemistry. Ann NY Acad Sci 228: 121–144Google Scholar
  5. Clara M (1959) Das Nervensystem des Menschen, 3. Aufl. Barth, LeipzigGoogle Scholar
  6. Dalakas M C, Park K Y, Semino-Mora C, Lee H S, Sivakumar K, Goldfarb L G (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342: 770–780PubMedCrossRefGoogle Scholar
  7. Edwards R H, Jones D A, Maunder C, Batra G J (1975) Needle biopsy for muscle chemistry. Lancet 1: 736–740PubMedCrossRefGoogle Scholar
  8. Engel A G (1970) Locating motor end plates for electron microscopy. Mayo Clin Proc 45: 450–454PubMedGoogle Scholar
  9. Fardeau M, Matsumura K, Tome F M, Collin H, Leturcq F, Kaplan J C, Campbell K P (1993) Deficiency of the 50 kDa dystrophin associated glycoprotein (adhalin) in severe autosomal recessive muscular dystrophies in children native from European countries. CR Acad Sci III 316: 799–804Google Scholar
  10. Farkas-Bargeton E, Diebler M F, Arsenio-Nunes M L, Wehrle R, Rosenberg B (1977) Histochemical, quantitative and ultrastructural maturation of human fetal muscle. J Neurol Sci 31: 245–259PubMedCrossRefGoogle Scholar
  11. Gillespie S K, Balasubramanian S, Fung E T, Huganir R L (1996) Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 16: 953–962PubMedCrossRefGoogle Scholar
  12. Grozdanovic Z, Christova T, Gosztonyi G, Mellerowicz H, Blottner D, Gossrau R (1997) Absence of nitric oxide synthase I despite the presence of the dystrophin complex in human striated muscle. Histochem J 29: 97–104PubMedCrossRefGoogle Scholar
  13. Johnson M A, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18: 111–129Google Scholar
  14. Korfage J A M, Brugman P, An Eijden T M G J (2000) Intermuscular and intramuscular differences in myosin heavy chain composition of the human masticatory muscles. J Neurol Sci 178: 95–106Google Scholar
  15. McNally E M, de Sa Moreira E, Duggan D J et al. (1998) Caveolin-3 in muscular dystrophy. Hum Mol Genet 7: 871–877PubMedCrossRefGoogle Scholar
  16. Meier T, Hauser D M, Chiquet M, Landmann L, Ruegg M A, Brenner H R (1997) Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17: 6534–6544PubMedGoogle Scholar
  17. Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S (1995) Dystrophin-associated proteins in muscular dystrophy. Hum Mol Genet 4: 1711–1716PubMedGoogle Scholar
  18. Polgar J, Johnson M A, Weightman D, Appleton D (1973) Data on fibre size in thirty-six human muscles. An autopsy study. J Neurol Sci 19: 307–318Google Scholar
  19. Porro R S, Webster H F, Tobin W (1969) Needle biopsy of skeletal muscle: a phase and electron microscopic evaluation of its usefulness in the study of muscle dsease. J Neuropathol Exp Neurol 28: 229–242PubMedCrossRefGoogle Scholar
  20. Ringqvist M (1974) Size and distribution of histochemical fibre types in masseter muscle of adults with different states of occlusion. J Neurol Sci 22: 429–438PubMedCrossRefGoogle Scholar
  21. Sadoulet-Puccio H M, Feener C A, Schaid D J, Thibodeau S N, Michels V V, Kunkel L M (1997a) The genomic organization of human dystrobrevin. Neurogenetics 1: 37–42PubMedCrossRefGoogle Scholar
  22. Sadoulet-Puccio H M, Rajala M, Kunkel L M (1997b) Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci USA 94: 12413–12418PubMedCrossRefGoogle Scholar
  23. Schröder J M (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Sorimachi H, Kinbara K, Kimura S et al. (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2 A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270: 31158–31162PubMedCrossRefGoogle Scholar
  25. Wewer U M, Engvall E (1996) Merosin/laminin-2 and muscular dystrophy. Neuromuscul Disord 6: 409–418PubMedCrossRefGoogle Scholar
  26. Wilson K L (2000) The nuclear envelope, muscular dystrophy and gene expression. Trends Cell Biol 10: 125–129PubMedCrossRefGoogle Scholar
  27. Worton R (1995) Muscular dystrophies: diseases of the dystrophin-glycoprotein complex (comment). Science 270: 755–756PubMedCrossRefGoogle Scholar
  28. Zacks S I (1973) The motor endplate. Krieger, Huntington/NYGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. M. Schröder

There are no affiliations available

Personalised recommendations