Advertisement

Die Zellen des Nervensystems und ihre Verknüpfungen

  • H. Wolburg

Zusammenfassung

Nerven- und Kreislaufsystem sind die Träger der Signale, die die Funktionen der verschiedenen Organe aufeinander abstimmen und den Organismus befähigen, auf innere und äußere Reize adäquat zu antworten. Dabei sind diese Signalübermittlungen von ganz unterschiedlicher Qualität und dienen ganz verschiedenen Zwecken.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams J C, Tucker R P (2000) The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218: 280–299PubMedGoogle Scholar
  2. Araque A, Parpura V, Sanzgiri R P, Haydon P G (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208–215PubMedGoogle Scholar
  3. Arroyo E J, Scherer S S (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113: 1–18PubMedGoogle Scholar
  4. Baas P W, Brown A (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol 7: 380–384PubMedGoogle Scholar
  5. Bandtlow C E, Schwab M E (2000) NI-35/250/Nogo-A: A neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia 29: 175–181Google Scholar
  6. Bandtlow C E, Zimmermann D R (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80: 1267–1290PubMedGoogle Scholar
  7. Baranano D E, Ferris C D, Snyder S H (2001) Atypical neural messengers. Trends Neurosci 24: 99–106PubMedGoogle Scholar
  8. Barres B A (1999) A new role for glia: generation of neurons! Cell 97: 667–670PubMedGoogle Scholar
  9. Barrett G L (2000) The p75 neurotrophin receptor and neuronal apoptosis. Progr Neurobiol 61: 205–229Google Scholar
  10. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81: 871–927PubMedGoogle Scholar
  11. Blinzinger K, Kreutzberg G W (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch 85: 145–157PubMedGoogle Scholar
  12. Braak H (1979) The pigment architecture of the human frontal lobe. Anat Embryol (Berl) 157: 35–68Google Scholar
  13. Bröer S, Brookes N (2001) Transfer of glutamine betweeen astrocytes and neurons. J Neurochem 77: 705–719PubMedGoogle Scholar
  14. Brown D R (2001) Prion and prejudice: normal protein and the synapse. Trends Neurosci 24: 85–90PubMedGoogle Scholar
  15. Brückner G, Brauer K, Härtig W et al. (1993) Perineuronal nets provide a polyanionic, glia-associated form of micro- environment around certain neurons in many parts of the rat brain. Glia 8: 183–200PubMedGoogle Scholar
  16. Bunge R P, Fernandez-Valle C (1995) Basic biology of the Schwann cell. In: Kettenmann H, Ransom B R (eds) Neuroglia. Oxford University Press, pp 44–57Google Scholar
  17. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurons. Progr Neurobiol 62: 561–581Google Scholar
  18. Caroni P (1997) Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bioessays 19: 767–775PubMedGoogle Scholar
  19. Celio M R, Spreafico R, DeBiasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21: 510–515PubMedGoogle Scholar
  20. Charles A C, Naus C C G, Zhu D G, Kidder G U, Dirksen E R, Sandersen M J (1992) Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 118: 195–202PubMedGoogle Scholar
  21. Chen D F, Schneider G E, Martinou J-C, Tonegawa S (1997) Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385: 434–439PubMedGoogle Scholar
  22. Chen M S, Huber A B, van der Haar M E et al. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403: 434–439PubMedGoogle Scholar
  23. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9: 268–287PubMedGoogle Scholar
  24. Deitmer J W (1995) pH-Regulation. In: Kettenmann H, Ransom B R (eds) Neuroglia. Oxford University Press, pp 230–245Google Scholar
  25. Dermietzel R (1998) Gap junction wiring: a “new” principle in cell-to-cell communication in the nervous system? Brain Res Rev 26: 176–183PubMedGoogle Scholar
  26. Dermietzel R, Spray D C (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16: 186–192PubMedGoogle Scholar
  27. Dezawa M, Adachi-Usami E (2000) Role of Schwann cells in retinal ganglion cell axon regeneration. Progr Ret Eye Res 19: 171–204Google Scholar
  28. Dringen R (2000) Metabolism and functions of glutathione in brian. Progr Neurobiol 62: 649–671Google Scholar
  29. Eccles J C (1990) Developing concepts of the synapses. J Neurosci 10: 3769–3781PubMedGoogle Scholar
  30. Eliasson C, Sahlgren C, Berthold C-H et al. (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274: 23996–24006PubMedGoogle Scholar
  31. Enkvist M O K, McCarthy K D (1992) Activation of proteinkinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J Neurochem 59: 519–526PubMedGoogle Scholar
  32. Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson D A, Gage F H (1998) Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317PubMedGoogle Scholar
  33. Evans R M (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20: 79–86PubMedGoogle Scholar
  34. Faissner A (1997) Glial derived extracellular matrix components: important roles in axon growth and guidance. Neuroscientist 3: 371–380Google Scholar
  35. Fanarraga M L, Griffiths I R, McCulloch M C, Barrie J A, Kennedy P G E, Brophy P J (1992) Rumpshaker: an X-linked mutation causing hypomyelination: developmental differences in myelination and glial cells between the optic nerve and spinal cord. Glia 5: 161–170PubMedGoogle Scholar
  36. Frisén J, Lendahl U (2001) Oh no, Notch again! Bio Essays 23: 3–7Google Scholar
  37. Gallo V, Ghiani C A (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21: 252–258PubMedGoogle Scholar
  38. Giaume C, Tabernero A, Medina J M (1997) Metabolic traf-ficking through astrocytic gap junctions. Glia 21: 114–123PubMedGoogle Scholar
  39. Goldman S A, Luskin M B (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci 21: 107–114PubMedGoogle Scholar
  40. González-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Ann Rev Neurosci 22: 219–240PubMedGoogle Scholar
  41. Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267–271PubMedGoogle Scholar
  42. Greenwood J, Begley D J, Segal M B (1995) New concepts of a blood-brain barrier. Plenum, New YorkGoogle Scholar
  43. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuronglia interaction: parallel fiber signalling to Bergmann glial cells. Nat Neurosci 2: 139–143Google Scholar
  44. Halpain S (2000) Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci 23: 141–146PubMedGoogle Scholar
  45. Hatten M E (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13: 179–184PubMedGoogle Scholar
  46. Hertz L, Dringen R, Schousboe A, Robinson S R (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57: 417–428PubMedGoogle Scholar
  47. Lessen K R, Mirsky R (1999) Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22: 402–410Google Scholar
  48. Jones F J, Jones P L (2000) The tenascin family of ECM glyco-proteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218: 235–259PubMedGoogle Scholar
  49. Keller P, Simons K (1997) Post-Golgi biosynthetic trafficking. J Cell Sci 110: 3001–3009PubMedGoogle Scholar
  50. Kettenmann H, Ransom B R (eds) (1995) Neuroglia. Oxford University PressGoogle Scholar
  51. Kuffler S W, Nicholls J G (1966) The physiology of neuroglia cells. Ergebn Physiol 57: 1–90Google Scholar
  52. Lee J C, Mayer-Proschel M, Rao M S (2000) Gliogenesis in the central nervous system. Glia 30: 105–121PubMedGoogle Scholar
  53. Leist M, Nicotera P (1998) Apoptosis, excitotoxicity, and neu-ropathology. Exp Cell Res 239: 183–201PubMedGoogle Scholar
  54. Letourneau P C, Condic M L, Snow D M (1994) Interactions of developing neurons with the extracellular matrix. J Neurosci 14: 915–928PubMedGoogle Scholar
  55. Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Wolburg H (2000) Claudin-1 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100: 323–331PubMedGoogle Scholar
  56. Liedtke W, Edelmann W, Bieri P L, Chiu F, Cowan N J, Kucherplati R, Raine C S (1996) GFAP is necessary for integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17: 607–615PubMedGoogle Scholar
  57. Malatesta P, Hartfuss E, Gótz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127: 5253–5263PubMedGoogle Scholar
  58. Manley G T, Fujimura M, Ma T, Noshita N, Filiz F, Bollen A W, Chan P, Verkman A S (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: 159–163PubMedGoogle Scholar
  59. Merrill J E, Benveniste E N (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19: 331–338PubMedGoogle Scholar
  60. Metzger F, Kapfhammer J P (2000) Protein kinase C activity modulates dendritic differentiation of rat Purkinje cells in cerebellar slice cultures. Europ J Neurosci 12: 1993–2005Google Scholar
  61. Mirsky R, Jessen K R (1996) Schwann cell development, differentiation and myelination. Curr Op Neurobiol 6: 89–96PubMedGoogle Scholar
  62. Moore S, Thanos S (1996) The concept of microglia in relation to central nervous system disease and regeneration. Progr Neurobiol 48: 441–460Google Scholar
  63. Mukherjee S, Ghosh R N, Maxfield F R (1997) Endocytosis. Physiol Rev 77: 759–803Google Scholar
  64. Murphy S (1993) Astrocytes. Pharmacology and function. Academic Press, San DiegoGoogle Scholar
  65. Nagy J I, Rash J E (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32: 29–44Google Scholar
  66. Nave K-A (1995) Neurological mouse mutants: a molecular- genetic analysis of myelin proteins. In: Kettenmann H, Ransom B R (eds) Neuroglia. Oxford University Press, pp 571–586Google Scholar
  67. Newman E A (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom B R (eds) Neuroglia. Oxford University Press, pp 717–731Google Scholar
  68. Nielsen S, Nagelhus E A, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen O P (1997) Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17: 171–180PubMedGoogle Scholar
  69. Nixon R A, Cataldo A M (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18: 489–496PubMedGoogle Scholar
  70. Norenberg M D (1995) Hepatic encephalopathy. In: Kettenmann H, Ransom B R (eds) Neuroglia. Oxford University Press, pp 950–963Google Scholar
  71. Nyakas C, Buwalda B, Luiten P G M (1996) Hypoxia and brain development. Progr Neurobiol 49: 1–51Google Scholar
  72. Pannese E (1994) Neurocytology. Fine structure of neurons, nerve processes, and neuroglial cells. Thieme, StuttgartGoogle Scholar
  73. Pardridge W M ( 1998 ) Introduction to the blood-brain barrier. Methodology, biology and pathology. Cambridge University PressGoogle Scholar
  74. Pekny M, Stanness K A, Eliasson C, Betsholtz C, Janigro D (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP- deficient mice. Glia 22: 390–400PubMedGoogle Scholar
  75. Peters A, Palay S L, Webster H F (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford University PressGoogle Scholar
  76. Pettmann B, Henderson C E (1998) Neuronal cell death. Neuron 20: 633–647Google Scholar
  77. Pfrieger F W, Barres B A (1996) New views on synapse-glia interactions. Curr Op Neurobiol 6: 615–621PubMedGoogle Scholar
  78. Piatt N, DaSilva R P, Gordon S (1998) Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8: 365–372Google Scholar
  79. Raivich G, Bohatschek M, Kloss C U A, Werner A, Jones L L, Kreutzberg G W (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30: 77–105PubMedGoogle Scholar
  80. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84PubMedGoogle Scholar
  81. Rash J E, Duffy H S, Dudek F E, Bilhartz B L, Whalen L R, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388: 265–292PubMedGoogle Scholar
  82. Rash J E, Yasumura T, Hudson C S, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sei USA 95: 11981–11986Google Scholar
  83. Redies C, Takeichi M (1996) Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev Biol 180: 413–423PubMedGoogle Scholar
  84. Reichenbach A (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cytotopographic specialization of glial cells. Glia 2: 250–259PubMedGoogle Scholar
  85. Reynolds B A, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710PubMedGoogle Scholar
  86. Richardson A, Hao C, Fedoroff S (1993) Microglia progenitor cells: a subpopulation in cultures of mouse neopallial astroglia. Glia 7: 25–33PubMedGoogle Scholar
  87. Schachner M, Martini R (1995) Glycans and the modulation of neural-recognition molecule function. Trends Neurosci 18: 183–191PubMedGoogle Scholar
  88. Schlote W, Boellaard J W (1983) Role of lipopigment during aging of nerve and glial cells in the human central nervous system. In: Cervos-Navarro J, Sarkander H-I (eds) Brain aging: neuropathology and neuropharmacology. Raven, New York (Aging, vol 21, pp 27–74 )Google Scholar
  89. Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286: 442–455PubMedGoogle Scholar
  90. Scott E K, Luo L (2001) How do dendrites take their shape? Nature Neurosci 4: 359–365PubMedGoogle Scholar
  91. Sesso A, Fujiwara D T, Jaeger M et al. (1999) Structural elements common to mitosis and apoptosis. Tissue Cell 31: 357–371PubMedGoogle Scholar
  92. Sheetz M P, Steuer E R, Schroer T A (1989) The mechanism and regulation of fast axonal transport. Trends Neurosci 12: 474–478PubMedGoogle Scholar
  93. Spray D C, Dermietzel R (1996) Gap junctions in the nervous system. Landes, Austin/TXGoogle Scholar
  94. Steinhäuser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19: 39–345Google Scholar
  95. Stichel C C, Hermanns S, Luhmann H J et al. (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Europ J Neurosci 11: 632–646Google Scholar
  96. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Progr Neurobiol 58: 233–247Google Scholar
  97. Streit W J, Walter S A, Pennell N A (1999) Reactive microgliosis. Progr Neurobiol 57: 563–581Google Scholar
  98. Südhof T C (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375: 645–653PubMedGoogle Scholar
  99. Svensson M, Eriksson N P, Aldskogius H (1993) Evidence for activation of astrocytes via reactive microglial cells following hypoglossal nerve transection. J Neurosci Res 35: 373–381PubMedGoogle Scholar
  100. Tanaka H, Shan W, Phillips GR et al. (2000) Molecular modi-fication of N-cadherin in response to synaptic activity. Neuron 25: 93–107PubMedGoogle Scholar
  101. Tjelle T E, Lovdal T, Berg T (2000) Phagosome dynamics and function. Bioessays 22: 255–263PubMedGoogle Scholar
  102. Traub P, Shoeman R L (1994) Intermediate filament and related proteins: potential activators of nucleosomes during transcription initiation and elongation? Bioessays 16: 349–355PubMedGoogle Scholar
  103. Tsacopoulos M, Magistretti P J (1996) Metabolic coupling between glia and neurons. J Neurosci 16: 877–885PubMedGoogle Scholar
  104. Tsukita S, Furuse M (1999) Occludin and claudins in tight junction strands: leading or supporting players? Trends Cell Biol 9: 268–273PubMedGoogle Scholar
  105. Ullian E M, Sapperstein S K, Chistopherson K S, Barres B A (2001) Control of synpase number by glia. Science 291: 657–661PubMedGoogle Scholar
  106. Upender M B, Naegele J R (1999) Activation of microglia during developmentally regulated cell death in the cerebral cortex. Dev Neurosci 21: 491–505PubMedGoogle Scholar
  107. Velazquez J L P, Carlen P L (2000) Gap junctions, synchrony and seizures. Trends Neurosci 23: 68–74Google Scholar
  108. Venero J L, Vizuete M L, Machado A, Cano J (2001) Aquaporins in the central nervous system. Progr Neurobiol 63: 321–336Google Scholar
  109. Walmsley B, Alvarez F J, Fyffe Rew (1998) Diversity of structure and function at mammalian central synapses. Trends Neurosci 21: 81–88PubMedGoogle Scholar
  110. Weller M, Kleihues P, Dichgans J, Ohgaki H (1998) CD95 ligand: lethal weapon against malignant glioma? Brain Pathol 8: 285–293PubMedGoogle Scholar
  111. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Progr Neurobiol 64: 365–391Google Scholar
  112. Wiencken A E, Casagrande V A (1999) Endothelial nitric oxide synthetase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26: 280–290PubMedGoogle Scholar
  113. Wolburg H (1995) Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J Brain Res 36: 239–258Google Scholar
  114. Wolburg H, Risau W (1995) Formation of the blood-brain barrier. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, pp 763–776Google Scholar
  115. Wolburg H, Neuhaus J, Kniesel U, Krauft B, Schmid E-M, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107: 1347–1357Google Scholar
  116. Wolff J R, Stuke K, Missler M, Tytko H, Schwarz P, Rohlmann A, Chao T I (1998) Autocellular coupling by gap junctions in cultured astrocytes: A new view on cellular autoregulation during process formation. Glia 24: 121–140Google Scholar
  117. Wyllie A H (1997) Apoptosis and carcinogenesis. Eur J Cell Biol 73: 189–197PubMedGoogle Scholar
  118. Yamaguchi Y (2001) Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Sem Cell & Dev Biol 12: 99–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Wolburg

There are no affiliations available

Personalised recommendations