Skip to main content

Finding Constrained Downside Risk-Return Efficient Credit Portfolio Structures Using Hybrid Multi-Objective Evolutionary Computation

  • Conference paper
Credit Risk

Part of the book series: Contributions to Economics ((CE))

Summary

In contemporary credit portfolio management, the portfolio risk-return analysis of financial instruments using certain downside credit risk measures requires the computation of a set of Pareto-efficient portfolio structures in a non-linear, non-convex setting. For real-world problems, additional constraints, e.g. supervisory capital limits, have to be respected. Particularly for formerly non-traded instruments, e.g. corporate loans, a discrete set of decision alternatives has to be considered for each instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frederick Andersson and Stanislaus Uryasev. Credit risk optimization with conditional value-at-risk criterion. 1999. University of Gainesville, working paper

    Google Scholar 

  2. Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.Mathematical Finance, 9(3)203–228, 1999.

    Article  Google Scholar 

  3. Basel Committee for Banking Supervision. The new basel capital accord. 2001. Bank for International Settlements, Basel, www.bis.org/publ/bcbsca03.pdf.

    Google Scholar 

  4. Peter Buergisser, Alexander Kurth, and Armin Wagner. Incorporating severity variations into credit risk. Journal of Risk, 3(4)5–31, 2001.

    Google Scholar 

  5. T. Chang, N. Meade, J. Beasley, and Y. Sharaiha. Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research 27:1271–1302, 2000.

    Article  Google Scholar 

  6. CreditSuisse Financial Products. CreditRisk(TM) - a credit risk management framework. 1997. www.csfp.co.uk/creditrisk/assets/creditrisk.pdf.

    Google Scholar 

  7. Kalyanmoy Deb. Multi-objective optimisation using evolutionary algorithms. John Wiley & Sons, Chichester, 2001.

    Google Scholar 

  8. Matthias EhrgottMulticriteria optimisation. Springer, Heidelberg, 2000.

    Google Scholar 

  9. Edwin Elton and Martin Gruber. Modern portfolio theory and investment analysis. John Wiley & Sons, Chichester, 1995. 264

    Google Scholar 

  10. David Fogel and Zbriginiew MichalewiczHow to solve it: Modern heuristics. Springer, Heidelberg, 2000.

    Google Scholar 

  11. Ruediger Frey and Alexander McNeil. Modelling dependent defaults. 2001. ETH Zuerich, working paper, www.math.ethz.ch/~frey/credit-paper.pdf.

    Google Scholar 

  12. Manfred Gilli and Evis Kellezi. Portfolio selection, tail risk and heuristic optimisation. 2000. University of Geneva, working paper.

    Google Scholar 

  13. David Goldberg. Genetic algorithms for search, optimisation and machine learning. Addison-Wesley, Reading, 1989.

    Google Scholar 

  14. Michael Gordy. Calculation of higher moments in CreditRisk-f with applications.2001. Board of Governors of the Federal Reserve System, Washington, working paper.

    Google Scholar 

  15. Greg Gupton, Christopher Finger, and Mickey Bhatia. Credit Metrics (TM) technical document. 1997. JPMorgan Inc., New York.

    Google Scholar 

  16. John Holland. Adaptation in natural and artificial systems. Michigan University Press, Ann Arbor, 1975.

    Google Scholar 

  17. Stephen Kealhofer. Portfolio management of default risk. 1998. KMV Corporation, San Francisco.

    Google Scholar 

  18. Frank Lehrbass. Rethinking risk-adjusted returns. Credit Risk Special Report, Risk, (4):35–40, 1999.

    Google Scholar 

  19. Harry Markowitz. Portfolio selection. Journal of Finance, 7:77ff, 1952.

    Article  Google Scholar 

  20. Haxry Panjer. Recursive evaluation of a family of Compound distributions. ASTIN Bulletin, 12:22–26, 1981.

    Google Scholar 

  21. Harry Panjer and Gordon Willmot.Insurance risk models. Society of Actuaries, Schaumburg, 1992.

    Google Scholar 

  22. Georg Pflug. Some remarks on the value-at-risk and the conditional value-atrisk. In S. Uryasev, editor, Probabilistic constrained optimization, pages 272–281. Kluwer, Dordrecht, 2000.

    Google Scholar 

  23. Guenter Rudolph and Alexandru Agapie. Convergence properties of some multiobjective evolutionary algorithms. In A. Zalzala, editor, Proceedings of the 2000 Congress on Evolutionary Computation, pages 1010–1016. IEEE Press, Piscataway, 2000.

    Google Scholar 

  24. Jonathan Schaffer. Some experiments in machine learning using vector evaluated genetic algorithms. PhD thesis, Vanderbilt University, Nashville, 1984.

    Google Scholar 

  25. Frank Schlottmann and Detlef Seese. An agent-based architecture for the management and trading of portfolio credit risk. 2001. University of Karlsruhe, working paper (in German).

    Google Scholar 

  26. Frank Schlottmann and Detlef Seese. A hybrid genetic-quantitative method for risk-return optimisation of credit portfolios. In Carl Chiarella and Eckhard Platen, editors Quantitative Methods in Finance 2001 Conference abstracts, page 55. University of Technology, Sydney, 2001. Füll paper: www.business. uts.edu.au/finance/resources/qmf2001/Schlottmann_F.pdf.

    Google Scholar 

  27. Hartmut Schmeck, Juergen Branke, and Udo Kohlmorgen. Parallel implementations of evolutionary algorithms. In A. Zomaya, F. Ercal, and S. Olariu, editors, Solutions to parallel and distributed Computing problems, pages 47–68. John Wiley & Sons, Chichester, 2001.

    Google Scholar 

  28. Detlef Seese and Frank Schlottmann. The building blocks of complexity: a unified criterion and selected problems in economics and finance. 2002. Presented at the Sydney Financial Mathematics Workshop 2002, www.qgroup.org.au/SFMW. Finding Constrained Downside Risk-Return 265

    Google Scholar 

  29. Detlef Seese and Frank Schlottmann. Large grids and local information flow as a reason for high complexity. In Gerry Frizelle and Huw Richards, editors, Tackling industrial complexity: the ideas that make a difference, pages 193–207. University of Cambridge, Cambridge, UK, 2002.

    Google Scholar 

  30. Detlef Seese and Frank Schlottmann. Structural reasons for high complexity: A survey on results and problems. pages 1-160, 2002. University of Karlsruhe, working paper.

    Google Scholar 

  31. William Sharpe. Capital asset prices. a theory of market equilibrium under conditions of risk. Journal of Finance, 19:425–442, 1964.

    Article  Google Scholar 

  32. Thomas Wilson. Portfolio credit risk (I). Risk, (9)111–119, 1997.

    Google Scholar 

  33. Thomas Wilson. Portfolio credit risk (II). Risk, (10):56–61, 1997.

    Google Scholar 

  34. Eckart Zitzler. Evolutionary algorithms for multiobjective evolutionary optimization: methods and applications. PhD thesis, Eidgenoessisch-Technische Hochschule, Zuerich, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlottmann, F., Seese, D. (2003). Finding Constrained Downside Risk-Return Efficient Credit Portfolio Structures Using Hybrid Multi-Objective Evolutionary Computation. In: Bol, G., Nakhaeizadeh, G., Rachev, S.T., Ridder, T., Vollmer, KH. (eds) Credit Risk. Contributions to Economics. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-59365-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59365-9_13

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-0054-8

  • Online ISBN: 978-3-642-59365-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics