Advertisement

Akute lymphatische Leukämie der Erwachsenen

  • Harald Rieder
  • Michael Kneba
Part of the Molekulare Medizin book series (MOLMED)

Zusammenfassung

Als Ford et al. 1958 bei einem Patienten mit akuter Leukämie erstmals einen Chromosomensatz mit 44 Elementen und einem zusätzlichen, kleinen Fragment fanden, stand noch die Frage im Vorder-grund, ob der normale Chromosomensatz in allen menschlichen Geweben 46 Elemente umfasst. Dennoch äußerten die Autoren die Vermutung, dass es sich bei diesem Befund um einen krankheitsbedingt abnormen, aneuploiden Chromosomensatz handeln könnte. Baikie et al. bestätigten diese Annahme 1959, als sie bei einem weiteren Leukämiepatienten im Knochenmark mit 48 Elementen eine Abweichung von der nunmehr etablierten normalen Chromosomenzahl feststellten und diesen aneuploiden Chromosomensatz auch unter zytostatischer Therapie nachweisen konnten. Zudem beschrieben sie bei 2 Patienten mit einer normalen Chromosomenzahl eine abnorme Morphologie der Chromosomen, die sie mit einer Tranlokation, d.h., mit der Verlagerung eines Stücks eines Chromosoms an ein anderes in Verbindung brachten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Archimbaud E, Charrin C, Ffrench M, Fiere D, Viala J-J (1987) Philadelphia chromosome-positive acute lymphoblastic leukaemia following radiotherapy for carcinoma of the cervix. Acta Haematol 77:238–240PubMedCrossRefGoogle Scholar
  2. Auxenfants E, Morel P, Lai JL et al. (1992) Secondary acute lymphoblastic leukemia with t(4;11): report on two cases and review of the literature. Ann Hematol 65:143–146PubMedCrossRefGoogle Scholar
  3. Baikie AG, Brown WMC, Jakobs PA, Milne JS (1959) Chromosome studies in human leukaemia. Lancet 2:425–428PubMedCrossRefGoogle Scholar
  4. Barrett AJ, Horowitz MM, Ash RC et al. (1992) Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 79:3067–3070PubMedGoogle Scholar
  5. Bartram CR, De Klein A, Hagemeijer A et al. (1983) Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature 306:277–280PubMedCrossRefGoogle Scholar
  6. Baruchel A, Cayuela JM, Macintyre E, Berger R, Sigaux F (1995) Assessment of clonal evolution at Ig/TCR loci in acute lymphoblastic leukaemia by single-strand conformation polymorphism studies and highly resolutive PCR derived methods: implication for a general strategy of minimal residual disease detection. Br J Haematol 90:85–93PubMedCrossRefGoogle Scholar
  7. Beishuizen A, Verhoeven M-AJ, Wering ER van, Hählen K, Hooijkaas H, Dongen JJM van (1994) Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 83:2238–2247PubMedGoogle Scholar
  8. Bene CM, Castoldi G, Knapp W et al. (1995) Proposals for the immunological classification of acute leukemias. Leukemia 9:1783–1786PubMedGoogle Scholar
  9. Bennett JM, Catovsky D, Daniel M-T et al. (1976) Proposals for the classification of the acute leukemias: French-American-British (FAB) Co-operative Group. Br J Haematol 33:451–458PubMedCrossRefGoogle Scholar
  10. Beran M, Cao X, Estrov Z et al. (1998) Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res 4:1661–1672PubMedGoogle Scholar
  11. Berger R, Bernheim A (1982) Cytogenetic studies on Burkitt’s lymphoma-leukemia. Cancer Genet Cytogenet 7:231–234PubMedCrossRefGoogle Scholar
  12. Bernasconi C, Brusamolino E, Pagnucco G, Bernasconi P, Orlandi E, Lazzarino M (1991) Burkitfs lymphoma/leukemia: a clinicopathologic study on 24 adult patients. Leukemia [Suppl 1] 5:90–94Google Scholar
  13. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122PubMedGoogle Scholar
  14. Biondi A, Valsecchi MG, Seriu T et al. (2000) Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM Study Group. Leukemia 14:1939–1943PubMedCrossRefGoogle Scholar
  15. Bloomfield CD, Peterson LC, Yunis JJ, Brunning RD (1977) The Philadelphia chromosome (Phi) in adults presenting with acute leukaemia: a comparison of Ph1+ and Ph1- patients. Br J Haematol 36:347–358PubMedCrossRefGoogle Scholar
  16. Bohlander SK, Muschinsky V, Schrader K et al. (2000) Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 14:93–99PubMedCrossRefGoogle Scholar
  17. Bokemeyer C, Freund M, Schmoll H-J, Rieder H, Fonatsch C (1992) Secondary lymphoblastic leukemia following treatment of a malignant germ cell tumour. Ann Oncol 3:772PubMedGoogle Scholar
  18. Borowitz MJ, Hunger SP, Carroll AJ et al. (1993) Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: A Pediatric Oncology Group Study. Blood 82:1086–1091PubMedGoogle Scholar
  19. Bose S, Deininger M, Goratybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367PubMedGoogle Scholar
  20. Brisco MJ, Hughes E, Neoh SH et al. (1996) Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood 87:5251–5256PubMedGoogle Scholar
  21. Brisco MJ, Sykes PJ, Hughes E et al. (2001) Molecular relapse can be detected in blood in a sensitive and timely fashion in B-lineage acute lymphoblastic leukemia. Leukemia 15:1801–1802PubMedCrossRefGoogle Scholar
  22. Bruggemann M, Droese J, Bolz I et al. (2000) Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14:1419–1425PubMedCrossRefGoogle Scholar
  23. Campana D, Pui C-H (1995) Detection of minimal residual disease in acute leukemia: Methodologie advances and clinical significance. Blood 85:1416–1434PubMedGoogle Scholar
  24. Caspari T (2000) How to activate p53. Curr Biol 10:R315–R317PubMedCrossRefGoogle Scholar
  25. Cave H, Guidai C, Rohrlich P et al. (1994) Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 83:1892–1902PubMedGoogle Scholar
  26. Cave H, Werff ten, Bosch van der J, Suciu S et al. (1998) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer — Childhood Leukemia Cooperative Group. N Engl J Med 339:591–598PubMedCrossRefGoogle Scholar
  27. Cayuela JM, Gardie B, Sigaux F (1997) Disruption of the multiple tumor suppressor gene MTS1/p16(INK4a)/ CDKN2 by illegitimate V(D)J recombinase activity in T-cell acute lymphoblastic leukemias. Blood 90:3720–3726PubMedGoogle Scholar
  28. Chung CY, Kantarjian H, Haidar M et al. (2000) Deletions in the 13q14 locus in adult lymphoblastic leukemia — rate of incidence and relevance. Cancer 88:1359–1364PubMedCrossRefGoogle Scholar
  29. Cortes J, O’Brien SM, Pierce S, Keating MJ, Freireich EJ, Kantarjian HM (1995) The value of high-dose systemic chemotherapy and intrathecal therapy for central nervous system prophylaxis in different risk groups of adult acute lymphoblastic leukemia. Blood 86:2091–2097PubMedGoogle Scholar
  30. Dabaja BS, Faderl S, Thomas D et al. (1999) Deletions and losses in chromosomes 5 or 7 in adult acute lymphocytic leukemia: incidence, associations and implications. Leukemia 13:869–872PubMedCrossRefGoogle Scholar
  31. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the p210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830PubMedCrossRefGoogle Scholar
  32. Davey FR, Lawrence D, MacCallum J et al. (1992) Morphologic characteristics of acute lymphoblastic leukemia (ALL) with abnormalities of chromosome 8, band q24. Am J Hematol 40:183–191PubMedCrossRefGoogle Scholar
  33. Dear TN, Sanchez-Garcia I, Rabbitts TH (1993) The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Nati Acad Sci USA 90:4431–4435CrossRefGoogle Scholar
  34. Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356PubMedGoogle Scholar
  35. De Klein A, Hagemeijer A, Bartram CR et al. (1986) bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood 68:1369–1375PubMedGoogle Scholar
  36. Dolken L, Schuler F, Dolken G (1998) Quantitative detection of t(14;18)-positive cells by real-time quantitative PCR using fluorogenic probes. Biotechniques 25:1058–1064PubMedGoogle Scholar
  37. Dongen JJ van, Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta 198:1–91PubMedCrossRefGoogle Scholar
  38. Dongen JJ van, Seriu T, Panzer-Grümayer ER et al. (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352:1731–1738PubMedCrossRefGoogle Scholar
  39. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK (1996) The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 93:4804–4809PubMedCrossRefGoogle Scholar
  40. Dreyling MH, Schrader K, Fonatsch C et al. (1998) MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood 91:4662–4667PubMedGoogle Scholar
  41. Druker BJ, Tamura S, Buchdunger E et al. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566PubMedCrossRefGoogle Scholar
  42. Dubé ID, Kamel-Reid S, Yuan CC et al. (1991) A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10; 14). Blood 78:2996–3003PubMedGoogle Scholar
  43. Duro D, Bernard O, Delia Valle V, Berger R, Larsen C-J (1995) A new type of pl6INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 11:21–29PubMedGoogle Scholar
  44. Faderl S, Kantarjian HM, Talpaz M, Estrov Z (1998) Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 91:3995–4019PubMedGoogle Scholar
  45. Faderl S, Talpaz M, Estrov Z, Obrien S, Kurzrock R, Kantarjian HM (1999) Mechanisms of disease — the biology of chronic myeloid leukemia. N Engl J Med 341:164–172PubMedCrossRefGoogle Scholar
  46. Faderl S, Kantarjian HM, Thomas DA et al. (2000) Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma 36:263–273PubMedCrossRefGoogle Scholar
  47. Fainstein E, Marcelle C, Rosner A et al. (1987) A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 330:386–388PubMedCrossRefGoogle Scholar
  48. Fonatsch C, Burrichter H, Schaadt M, Kirchner HH, Diehl V (1982) Translocation t(8;22) in peripheral lymphocytes and established lymphoid cell lines from a patient with Hodgkin’s disease followed by acute lymphatic leukemia. Int J Cancer 30:321–327PubMedCrossRefGoogle Scholar
  49. Ford CE, Jakobs PA, Lajtha LG (1958) Human somatic chromosomes. Nature 181:1565–1568PubMedCrossRefGoogle Scholar
  50. Foroni L, Coyle LA, Papaioannou M et al. (1997) Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response. Leukemia 11:1732–1741PubMedCrossRefGoogle Scholar
  51. Garipidou V, Yamada T, Prentice HG, Seeker-Walker LM (1990) Trisomy 8 in acute lymphoblastic leukemia (ALL): a case report and update of the literature. Leukemia 4:717–719PubMedGoogle Scholar
  52. Gassmann W, Löffler H, Thiel E et al. (1997) Morphological and cytochemical findings in 150 cases of T-lineage acute lymphoblastic leukaemia in adults. Br J Haematol 97:372–382PubMedCrossRefGoogle Scholar
  53. Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG (1998) Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res 58:3957–3964PubMedGoogle Scholar
  54. GFCH (1994) Groupe Français de Cytogénétique Hématologique — Acute leukemia treated with intensive chemotherapy in patients with a history of previous chemo- and/or radiotherapy: prognostic significance of karyotype and preceding myelodysplastic syndrome. Leukemia 8:87–91Google Scholar
  55. Ghali DW, Panzer S, Fischer S et al. (1995) Heterogeneity of the T-cell receptor d gene indicating subclone formation in acute precursor B-cell leukemias. Blood 85:2795–2801PubMedGoogle Scholar
  56. Gleissner B, Rieder H, Thiel E et al. (2001) Prospective BCR-ABL analysis by polymerase chain reaction (PCR) in adult acute B-lineage lymphoblastic leukemia: reliability of PCR and comparison with cytogenetic data. Leukemia 15:1834–1840PubMedCrossRefGoogle Scholar
  57. Gökbuget N, Hoelzer D (1998) Akute lymphatische Leukämie des Erwachsenen. Onkologe 4:778–790CrossRefGoogle Scholar
  58. Gökbuget N, Hoelzer D, Arnold R et al. (2000) Treatment of adult ALL according to protocols of the German Multicenter Study Group for Adult ALL (GMALL). Hematol Oncol Clin North Am 14:1307–1325PubMedCrossRefGoogle Scholar
  59. Götz G, Weh H-J, Walter TA et al. (1992) Clinical and prognostic significance of the Philadelphia chromosome in adult patients with acute lymphoblastic leukemia. Ann Hematol 64:97–100PubMedCrossRefGoogle Scholar
  60. Goulden NJ, Knechtli CC, Garland RJ et al. (1998) Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol 100:235–244PubMedCrossRefGoogle Scholar
  61. Griesinger F, Ludwig W-D, Falk M et al. (1993) Detection of HRX-FEL fusion transcripts in pre-pre-B-ALL with and without cytogenetic demonstration of t(4;11). Ann Hematol 67:A41CrossRefGoogle Scholar
  62. Griesinger F, Elfers H, Ludwig W-D et al. (1994) Detection of HRX-FEL fusion transcripts in pre-pre-B-ALL with and without cytogenetic demonstration of t(4;11). Leukemia 8:542–548PubMedGoogle Scholar
  63. Griffiths SD, Healy LE, Ford AM et al. (1992) Clonal characteristics of acute lymphoblastic cells derived from BCR/ABL pl90 transgenic mice. Oncogene 7:1391–1399PubMedGoogle Scholar
  64. Groffen J, Stephenson JR, Heisterkamp N, De Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a region, bcr, on chromosome 22. Cell 36:93–99PubMedCrossRefGoogle Scholar
  65. Groupe Français de Cytogénétique Hématologique (1991a) Isochromosome 21q in hematologic malignancies. Cancer Genet Cytogenet 55:101–105CrossRefGoogle Scholar
  66. Groupe Français de Cytogénétique Hématologique (1991b) t(10;11)(p13–14;q14–21): a new recurrent translocation in T-cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 3:411–415CrossRefGoogle Scholar
  67. Groupe Français de Cytogénétique Hématologique (1993) Collaborative study of karyotypes in childhood acute lymphoblastic leukemias. Leukemia 7:10–19Google Scholar
  68. Groupe Français de Cytogénétique Hématologique (1996) Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings and outcome. A collaborative study of the Groupe Français de Cytogenetique Hematologique. Blood 87:3135–3142Google Scholar
  69. Haidar MA, Kantarjian H, Manshouri T et al. (2000) ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88:1057–1062PubMedCrossRefGoogle Scholar
  70. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371:257–261PubMedCrossRefGoogle Scholar
  71. Harbott J, Mancini M, Verellen-Dumoulin C, Moorman AV, Seeker-Walker LM (1998) Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. European 11q23 Workshop Participants. Leukemia 12:823–827PubMedCrossRefGoogle Scholar
  72. Harris NL, Jaffe ES, Stein H et al. (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392PubMedGoogle Scholar
  73. Harris NL, Jaffe ES, Diebold J et al. (1999 a) The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November, 1997. Ann Oncol 10:1419–1432PubMedCrossRefGoogle Scholar
  74. Harris NL, Jaffe ES, Diebold J et al. (1999b) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. J Clin Oncol 17:3835–3849PubMedGoogle Scholar
  75. Harrison CJ, Cuneo A, Clark R et al. (1998) Ten novel 11q23 chromosomal partner sites. European 11q23 Workshop Participants. Leukemia 12:811–822PubMedCrossRefGoogle Scholar
  76. Hatano M, Roberts CWM, Minden M, Crist WM, Korsmeyer SJ (1991) Deregulation of a homeobox gene, HOX11, by the t(10;14) in T-cell leukemia. Science 253:79–82PubMedCrossRefGoogle Scholar
  77. Hawkins JM, Moorman AV, Hoffbrand AV et al. (1994) Association of 17p loss with late-stage or refractory disease in hematologic malignancy. Cancer Genet Cytogenet 77:134–143PubMedCrossRefGoogle Scholar
  78. Hawley RG, Fong AZC, Lu M, Hawley TS (1994) The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 9:1–12PubMedGoogle Scholar
  79. Hawley RG, Fong AZC, Reis MD, Zhang N, Lu M, Hawley TS (1997) Transforming function of the HOX11/TCL3 homeobox gene. Cancer Res 57:337–345PubMedGoogle Scholar
  80. Heisterkamp N, Stam K, Groffen J, De Klein A, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315:758–761PubMedCrossRefGoogle Scholar
  81. Hoelzer D, Thiel E, Löffler H et al. (1984) Intensified therapy in acute lymphoblastic and acute undifferentiated leukemia in adults. Blood 64:38–47PubMedGoogle Scholar
  82. Hoelzer D, Thiel E, Büchner T et al. (1988) Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood 71:123–131PubMedGoogle Scholar
  83. Hoelzer D, Ludwig WD, Thiel E et al. (1996) Improved outcome in adult B-cell acute lymphoblastic leukemia. Blood 87:495–508PubMedGoogle Scholar
  84. Hongo T, Yajima S, Sakurai M, Horikoshi Y, Hanada R (1997) In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood 89:2959–2965PubMedGoogle Scholar
  85. Ito C, Kumagai M, Manabe A et al. (1999) Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood 93:315–320PubMedGoogle Scholar
  86. James MC, Peters G (2000) Alternative product of the p16/ CKDN2A locus connects the Rb and p53 tumor suppressors. Prog Cell Cycle Res 4:71–81PubMedCrossRefGoogle Scholar
  87. Janssen JWG, Ludwig W-D, Borkhardt A et al. (1994) Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood 84:3835–3842PubMedGoogle Scholar
  88. Johansson B, Mertens F, Mitelman F (1994) Secondary chromosomal abnormalities in acute leukemias. Leukemia 8:953–962PubMedGoogle Scholar
  89. Johansson B, Moorman AV, Haas OA et al. (1998 a) Hematologic malignancies with t(4;11)(q21;q23) — a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop Participants. Leukemia 12:779–787PubMedCrossRefGoogle Scholar
  90. Johansson B, Moorman AV, Seeker-Walker LM (1998 b) Derivative chromosomes of 11q23-translocations in hematologic malignancies. European 11q23 Workshop participants. Leukemia 12:828–833PubMedCrossRefGoogle Scholar
  91. Kamb A, Gruis NA, Weaver-Feldhaus J et al. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440PubMedCrossRefGoogle Scholar
  92. Kapelushnik J, Dubé I, Wilson P, Greenberg M (1991) Acute lymphoblastic leukemia with t(4;11) translocation after osteogenic sarcoma. Cancer 67:2887–2889PubMedCrossRefGoogle Scholar
  93. Kaspers GJL, Smets LA, Pieters R, Van Zantwijk CH, Wering ER van, Veerman AJP (1995) Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood 85:751–756PubMedGoogle Scholar
  94. Kawabe T, Muslin AJ, Korsmeyer SJ (1997) HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385:454–458PubMedCrossRefGoogle Scholar
  95. Kennedy MA, Gonzalez-Sarmiento R, Kees UR et al. (1991) HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 88:8900–8904PubMedCrossRefGoogle Scholar
  96. Kneba M, Bolz I, Linke B, Bertram J, Rothaupt D, Hiddemann W (1994) Characterization of clone-specific rearranged T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood 84:574–581PubMedGoogle Scholar
  97. Kobayashi H, Hosoda F, Maseki N et al. (1997) Hematologic malignancies with the t(10;11)(p13;q21) have the same molecular event and a variety of morphologic or immunologic phenotypes. Genes Chromosomes Cancer 20:253–259PubMedCrossRefGoogle Scholar
  98. Kumon K, Kobayashi H, Maseki N et al. (1999) Mixed-lineage leukemia with t(10;11)(P13;q21): an analysis of AF10-CALM and CALM-AF10 fusion mRNAs and clinical features. Genes Chromosomes Cancer 25:33–39PubMedCrossRefGoogle Scholar
  99. Lai JL, Fenaux P, Zandecki M, Nelken B, Huart JJ, Deminatti M (1989) Cytogenetic studies in 30 patients with Burkitt’s lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormalities. Ann Genet 32:26–32PubMedGoogle Scholar
  100. Lampert F, Harbott J, Ritterbach J et al. (1988) T-cell acute childhood lymphoblastic leukemia with chromosome 14q11 anomaly: a morphologic, immunologic, and cytogenetic analysis of 10 patients. Blut 56:117–123PubMedCrossRefGoogle Scholar
  101. Larson RA, Dodge RK, Burns CP et al. (1995) A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: Cancer and Leukemia Group B Study 8811. Blood 85:2025–2037PubMedGoogle Scholar
  102. Lennard A, Jackson GH, Carey PJ, Bown N, Middleton P, Proctor SJ (1991) Secondary acute lymphoblastic leukaemia with 4:11 translocation following treatment for Hodgkin’s disease: case report and review of the literature. Leukemia 5:624–627PubMedGoogle Scholar
  103. Lewis SM, Agard E, Suh S, Czyzyk L (1997) Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol 17:3125–3136PubMedGoogle Scholar
  104. Li SG, Ilaria RL, Million RP, Daley GQ, Vanetten RA (1999) The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 189:1399–1412PubMedCrossRefGoogle Scholar
  105. Lillington DM, Young BD, Berger R, Martineau M, Moorman AV, Seeker-Walker LM (1998) The t(10;11)(pl2;q23) translocation in acute leukaemia: a cytogenetic and clinical study of 20 patients. European 11q23 Workshop Participants. Leukemia 12:801–804PubMedCrossRefGoogle Scholar
  106. Lu M, Zhang N, Ho AD (1992) Genomic organization of the putative human homeobox proto-oncogene HOX-11 (TCL-3) and its endogenous expression in T cells. Oncogene 7:1325–1330PubMedGoogle Scholar
  107. Ludwig WD, Rieder H, Bartram CR et al. (1998) Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 92:1898–1909PubMedGoogle Scholar
  108. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082PubMedCrossRefGoogle Scholar
  109. Lynch HT, Smyrk T, Kern SE et al. (1996) Familial pancreatic cancer: a review. Semin Oncol 23:251–275PubMedGoogle Scholar
  110. Mahon FX, Deininger MW, Schultheis B et al. (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96:1070–1079PubMedGoogle Scholar
  111. Maloney KW, McGavran L, Odom LF, Hunger SP (1998) Different patterns of homozygous p-16(INK4A) and p15(INK4B) deletions in childhood acute lymphoblastic leukemias containing distinct E2A translocations. Leukemia 12:1417–1421PubMedCrossRefGoogle Scholar
  112. Martineau M, Berger R, Lillington DM, Moorman AV, Seeker-Walker LM (1998) The t(6;11)(q27;q23) translocation in acute leukemia: a laboratory and clinical study of 30 cases. EU Concerted Action 11q23 Workshop Participants. Leukemia 12:788–791PubMedCrossRefGoogle Scholar
  113. Maurer J, Janssen JWG, Thiel E et al. (1991) Detection of chimeric BCR-ABL genes in acute lymphoblastic leukemia by the polymerase chain reaction. Lancet 337:1055–1058PubMedCrossRefGoogle Scholar
  114. McNally RJ, Rowland D, Roman E, Cartwright RA (1997) Age and sex distributions of hematological malignancies in the U.K. Hematol Oncol 15:173–189PubMedCrossRefGoogle Scholar
  115. Melo JV (1997) BCR-ABL gene variants. Baillieres Clin Haematol 10:203–222PubMedCrossRefGoogle Scholar
  116. Mertens F, Johansson B, Mitelman F (1994) Isochromosomes in neoplasia. Genes Chromosomes Cancer 10:221–230PubMedCrossRefGoogle Scholar
  117. Meyn MS (1999) Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet 55:289–304PubMedCrossRefGoogle Scholar
  118. Mitelman F (2001) Database of chromosome aberrations in cancer. In: Mitelman F, Johansson B, Mertens F (eds) http://cgap.nci.nih.gov/Chromosomes/Mitelman Google Scholar
  119. Moorman AV, Hagemeijer A, Charrin C, Rieder H, Seeker-Walker LM (1998) The translocations, t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. European 11q23 Workshop Participants. Leukemia 12:805–810PubMedCrossRefGoogle Scholar
  120. Mossafa H, Huret JL, Brizard A, Guilhot F, Lessard M, Tanzer J (1994) Isochromosome 8q: a new recurring secondary anomaly in adults with B-lineage acute lymphoid leukemia. Cancer Genet Cytogenet 73:84–85PubMedCrossRefGoogle Scholar
  121. Nakamura M, Sugita K, Inukai T et al. (1999) p16/MTS1/ INK4A gene is frequently inactivated by hypermethylation in childhood acute lymphoblastic leukemia with 11q23 translocation. Leukemia 13:884–890PubMedCrossRefGoogle Scholar
  122. Narita M, Shimizu K, Hayashi Y et al. (1999) Consistent detection of CALM-AF10 chimaeric transcripts in haematological malignancies with t(10;11)(p13;ql4) and identification of novel transcripts. Br J Haematol 105:928–937PubMedCrossRefGoogle Scholar
  123. National Cancer Institute (2000) SEER Cancer statistics review, 1973–1997. In: Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edward BK (eds) http://seer.cancer.gov/Publications/CSR1973_1997National Cancer Institute, Bethesda, MDGoogle Scholar
  124. Ohnishi H, Hanada R, Horibe K et al. (1996) Homozygous deletions of p16/MTS1 and p15/MTS2 genes are frequent in t(1;19)-negative but not in t(1;19)-positive B precursor acute lymphoblastic leukemia in childhood. Leukemia 10:1104–1110PubMedGoogle Scholar
  125. Omura-Minamisawa M, Diccianni MB, Batova A et al. (2000) Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clin Cancer Res 6:1219–1228PubMedGoogle Scholar
  126. Ottmann OG, Sawyers CL, Druker B et al. (2000) A phase II study to determine the safety and anti-leukemic effects of STI571 in adult patients with Philadelphia chromosome positive acute leukemias (abstract). Blood 96:XsGoogle Scholar
  127. Pabst T, Schwaller J, Bellomo MJ et al. (1996) Frequent clonal loss of heterozygosity but scarcity of microsatellite instability at chromosomal breakpoint cluster regions in adult leukemias. Blood 88:1026–1034PubMedGoogle Scholar
  128. Pagano L, Pulsoni A, Tosti ME et al. (1999) Acute lymphoblastic leukaemia occurring as second malignancy: report of the GIMEMA Archive of Adult Acute Leukaemia. Br J Haematol 106:1037–1040PubMedCrossRefGoogle Scholar
  129. Panzer-Grümayer ER, Schneider M, Panzer S, Fasching K, Gadner H (2000) Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 95:790–794PubMedGoogle Scholar
  130. Pettenati MJ, Rao N, Wofford M et al. (1994) Presenting characteristics of trisomy 8 as the primary cytogenetic abnormality associated with childhood acute lymphoblastic leukemia: a Pediatric Oncology Group (POG) Study (8600/8493). Cancer Genet Cytogenet 75:6–10PubMedCrossRefGoogle Scholar
  131. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ et al. (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12:2006–2014PubMedCrossRefGoogle Scholar
  132. Pongers-Willemse MJ, Seriu T, Stolz F et al. (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13:110–118PubMedCrossRefGoogle Scholar
  133. Preudhomme C, Henic N, Cazin B et al. (1997) Good correlation between RT-PCR analysis and relapse in Philadelphia (Ph1)-positive acute lymphoblastic leukemia (ALL). Leukemia 11:294–298PubMedCrossRefGoogle Scholar
  134. Propp S, Lizzi FA (1970) Philadelphia chromosome in acute lymphoblastic leukemia. Blood 36:353–360PubMedGoogle Scholar
  135. Radich J, Gehly G, Lee A et al. (1997) Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 89:2602–2609PubMedGoogle Scholar
  136. Reisman LE, Mitani M, Zuelzer WW (1964) Chromosome studies in leukemia — I. Evidence for the origin of leukemic stem lines from aneuploid mutants. N Engl J Med 270:591–597PubMedCrossRefGoogle Scholar
  137. Rieder H, Freund M, Fonatsch C (1991) Abnormalities of the short arm of chromosome 9 — a nonrandom secondary aberration in Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). Cancer Genet Cytogenet 53:139–142PubMedCrossRefGoogle Scholar
  138. Rieder H, Ludwig W-D, Gassmann W et al. (1993) Chromosomal abnormalities in adult ALL: results of the BMFT ALL/AUL study group. Recent Results Cancer Res 131:133–147PubMedGoogle Scholar
  139. Rieder H, Ludwig WD, Gassmann W et al. (1996) Prognostic significance of additional chromosome abnormalities in adult patients with Philadelphia chromosome positive acute lymphoblastic leukaemia. Br J Haematol 95:678–691PubMedCrossRefGoogle Scholar
  140. Rieder H, Bonwetsch C, Janssen LAJ et al. (1998) High rate of chromosome abnormalities detected by fluorescence in situ hybridization using BCR and ABL probes in adult acute lymphoblastic leukemia. Leukemia 12:1473–1481PubMedCrossRefGoogle Scholar
  141. Rieder H, Fonatsch C, Hoelzer D, Hasenburg T (2001) High rate of homozygous p16 deletions in Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Hematol [Suppl II] 80:S31Google Scholar
  142. Rivera GK, Pinkel D, Simone JV, Hancock ML, Crist WM (1993) Treatment of acute lymphoblastic leukemia — 30 years’ experience at St. Jude Children’s Research Hospital. N Engl J Med 329:1289–1295PubMedCrossRefGoogle Scholar
  143. Roberts CWM, Shutter JR, Korsmeyer SJ (1994) Hox11 controls the genesis of the spleen. Nature 368:747–749PubMedCrossRefGoogle Scholar
  144. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF (1997) Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 336:317–323PubMedCrossRefGoogle Scholar
  145. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and giemsa staining. Nature 243:290–293PubMedCrossRefGoogle Scholar
  146. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378:F115–F177PubMedGoogle Scholar
  147. Saglio G, Guerrasio A, Rosso C et al. (1990) New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 76:1819–1824PubMedGoogle Scholar
  148. Sandberg AA, Ishihara T, Miwa T, Hauschka TS (1961) The in vivo chromosome constitution of marrow from 34 human leukemias and 60 nonleukemic controls. Cancer Res 21:678–689PubMedGoogle Scholar
  149. Sandler DP, Shore DL, Anderson JR et al. (1993) Cigarette smoking and risk of acute leukemia: associations with morphology and cytogenetic abnormalities in bone marrow. J Natl Cancer Inst 85:1994–2003PubMedCrossRefGoogle Scholar
  150. Schoch C, Rieder H, Freund M, Hoelzer D, Riehm H, Fonatsch C (1995 a) Twenty-three cases of acute lymphoblastic leukemia with translocation t(4;11)(q21;q23): the implication of additional chromosomal aberrations. Ann Hematol 70:195–201PubMedCrossRefGoogle Scholar
  151. Schoch C, Rieder H, Stollmann-Gibbels B et al. (1995 b) 17p anomalies in lymphoid malignancies: diagnostic and prognostic implications. Leuk Lymphoma 17:271–279PubMedCrossRefGoogle Scholar
  152. Secco C, Wiernik PH, Bennett JM, Paietta E (1996) Acute leukemia with t(10;11)(p11-p15;q13-q23). Cancer Genet Cytogenet 86:31–34PubMedCrossRefGoogle Scholar
  153. Seeker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV (1991) Philadelphia positive acute lymphoblastic leukemia in adults — age distribution, BCR breakpoint and prognostic significance. Leukemia 5:196–199Google Scholar
  154. Seeker-Walker LM, Prentice HG, Durrani J, Richards S, Hall E, Harrison G (1997) Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. Br J Haematol 96:601–610CrossRefGoogle Scholar
  155. Shippey CA, Lawlor E, Seeker-Walker LM (1989) Isochromosome 9q in acute lymphoblastic leukemia: a new nonrandom finding. Leukemia 3:195–199PubMedGoogle Scholar
  156. Steenbergen EJ, Verhagen OJ, Van Leeuwen EF, Borne AE dem, Van der Schoot CE (1993) Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood 82:581–589PubMedGoogle Scholar
  157. Stock W, Tsai T, Golden C et al. (2000) Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia. Blood 95:2364–2371PubMedGoogle Scholar
  158. Swansbury GJ, Slater R, Bain BJ, Moorman AV, Seeker-Walker LM (1998) Hematological malignancies with t(9;11)(p21–22;q23) — a laboratory and clinical study of 125 cases. European 11q23 Workshop Participants. Leukemia 12:792–800PubMedCrossRefGoogle Scholar
  159. Tang JL, Tien HF, Lin MT, Chen PJ, Chen YC (1998) Frequent p53 mutation in relapsed acute lymphoblastic leukemia with cytogenetic instability: a longitudinal analysis. Anticancer Res 18:1273–1278PubMedGoogle Scholar
  160. Taylor PR A, Irving J, Brown N, Proctor S J (1997) Incidence of Ph-1 positive ALL in unselected, population-based study of adult ALL. Br J Haematol 97:937–938PubMedGoogle Scholar
  161. Testa JR, Misawa S, Oguma N, Van Sloten K, Wiernik PH (1985) Chromosomal alterations in acute leukemia patients studied with improved culture methods. Cancer Res 45:430–434PubMedGoogle Scholar
  162. Tsai T, Davalath S, Rankin C et al. (1996) Tumor suppressor gene alteration in adult acute lymphoblastic leukemia (ALL). Analysis of retinoblastoma (Rb) and p53 gene expression in lymphoblasts of patients with de novo, relapsed, or refractory ALL treated in Southwest Oncology Group Studies. Leukemia 10:1901–1910PubMedGoogle Scholar
  163. Van Rhee F, Marks DI, Lin F et al. (1995) Quantification of residual disease in Philadelphia-positive acute lymphoblastic leukemia: comparison of blood and bone marrow. Leukemia 9:329–335PubMedGoogle Scholar
  164. Voncken JW, Kaartinen V, Pattengale PK, Germeraad WTV, Groffen J, Heisterkamp N (1995) BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood 86:4603–4611PubMedGoogle Scholar
  165. Walters R, Kantarjian HM, Keating MJ et al. (1990) The importance of cytogenetic studies in adult acute lymphoblastic leukemia. Am J Med 89:579–587PubMedCrossRefGoogle Scholar
  166. Westbrook CA, Hooberman AL, Spino C et al. (1992) Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a cancer and leukemia group B study (8762). Blood 80:2983–2990PubMedGoogle Scholar
  167. Wetzler M, Dodge RK, Mrozek K et al. (1999) Prospective karyotype analysis in adult acute lymphoblastic leukemia: The Cancer and Leukemia Group B Experience. Blood 93:3983–3993PubMedGoogle Scholar
  168. Whitehead VM, Vuchich MJ, Lauer SJ et al. (1992) Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyper diploid (>50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 80:1316–1323PubMedGoogle Scholar
  169. Whitehead VM, Vuchich MJ, Cooley LD et al. (1998) Accumulation of methotrexate polyglutamates, ploidy and trisomies of both chromosomes 4 and 10 in lymphoblasts from children with B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Leuk Lymphoma 31:507–519PubMedGoogle Scholar
  170. Wiman KG (1997) p53: Emergency brake and target for cancer therapy. Exp Cell Res 237:14–18PubMedCrossRefGoogle Scholar
  171. Yamada T, Craig JM, Seeker-Walker LM (1990) Isochromosome 7q is restricted to the lymphoid lineage in T cell acute lymphoblastic leukaemia. Br J Haematol 75:137–138PubMedCrossRefGoogle Scholar
  172. Zech L (1969) Investigation of metaphase chromosomes with DNA-binding fluorochromes. Exp Cell Res 58:463Google Scholar
  173. Zhang MJ, Hoelzer D, Horowitz MM et al. (1995) Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. The Acute Lymphoblastic Leukemia Working Committee. Ann Intern Med 123:428–431PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harald Rieder
  • Michael Kneba

There are no affiliations available

Personalised recommendations