Generalized Taylor expansions Euler-Maclaurin summation formula

  • Elementary Theory
  • Philip Spain


Let K be a commutative field of characteristic 0, and K[X] the algebra of polynomials in one indeterminate over K (Alg., IV. 1); throughout this section by anoperator on K[X] we shall mean a linear map U of the vector space K[X] (over K) into itself; since the monomials X n (n≥0) form a basis for this space, U is determined by the polynomials U(X n ); specifically, if \(f({\text{X}}) = \sum\limits_{k = 0}^\infty {{\lambda _k}} {{\text{X}}^k}\) with λ k ∈K, then \(U(f) = \sum\limits_{k = 0}^\infty {{\lambda _k}U} {\text{(}}{{\text{X}}^k})\)


Asymptotic Expansion Prime Number Composition Operator Formal Series Entire Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (I).
    I. Newton, in St. P. Rigaud, Correspondence of scientific men, Oxford, 1841, t. II, p. 309–310.Google Scholar
  2. (II).
    Jakob Bernoulli, Ars conjectandi, Bâle, 1713.Google Scholar
  3. (III).
    L. Euler, Opera omnia (1), t. XIV; Commentationes analyticae…, Leipzig-Berlin (Teubner), 1924:Google Scholar
  4. a).
    Methodus generalis summandi progressiones, p. 42–72 (=Comm. Acad. petrop., t. VI (1732–33));Google Scholar
  5. b).
    De summis serierum reciprocarum, p. 73–86 (=Comm. Acad. petrop., t. VII (1734–35));Google Scholar
  6. c).
    De progressionibus harmonicis observationes, p. 87–100 (ibid.);Google Scholar
  7. d).
    Inventio summae cujusque seriei, p. 108–123 (=Comm. Acad. petrop., t. VIII (1736));Google Scholar
  8. e).
    De summis serierum reciprocarum dissertatio altera..., p. 138–155 (=Misc. Berol., t. VII (1743));Google Scholar
  9. f).
    Consideratio progressionis,p.350–363 (=Comm. Acad. petrop., t. XI (1739));Google Scholar
  10. g).
    De seriebus quibusdam considerationes, p. 407–462 (=Comm. Acad. petrop., t. XII (1740)).Google Scholar
  11. (IV).
    C. Maclaurin, A complete treatise offluxions, Edinburgh, 1742.Google Scholar
  12. (V) a).
    A. L. Cauchy: Cours d’Analyse de l’Ecole Royale Polytechnique, 1re partie, 1821 (=Œuvres, (2), t. III, Paris (Gauthier-Villars), 1897;Google Scholar
  13. b).
    A. L. Cauchy: Œuvres, (1), t. VIII, p. 18–25, Paris (Gauthier-Villars), 1893.Google Scholar
  14. (VI).
    N. H. Abel, Œuvres, t. II, p. 197–205, éd. Sylow and Lie, Christiania, 1881.Google Scholar
  15. (VII) a).
    P. Du Bois-Reymond: Sur la grandeur relative des infinis des fonctions, Ann. di Mat. (2), t. IV (1871), p. 338–353;Google Scholar
  16. b).
    P. Du Bois-Reymond:Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen, Math. Ann., t. VIII (1875), p. 362–414.Google Scholar
  17. (VIII).
    H. Poincaré, Sur les intégrales irrégulières des équations linéaires, Acta Math., t. VIII (1886), p. 295–344.CrossRefGoogle Scholar
  18. (IX).
    G. H. Hardy, Orders of infinity, Cambridge tracts, n° 12, 2nd ed., Cambridge University Press, 1924.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Elementary Theory
  • Philip Spain
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowScotland

Personalised recommendations