Skip to main content

The Calibration Problem in Industry

  • Conference paper
  • 411 Accesses

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

The calibration problem has been faced from different lines of thought (classical, Bayesian, structural, nonparametric, robust approach) and for different applications in industry (gas liquid chromatography, flame emission spectrometry, photometric analysis, etc.). The problem remains the evaluation of confidence intervals. This paper proposes an optimal design approach, adopting D and c-optimality, to obtain the asymptotic variance of the calibrating value, so that approximate confidence intervals can be evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, D. (1993). Is Industrial Statistics Out of Control? Statistical Science, 8, 356–409.

    Article  Google Scholar 

  2. Brown, P.J. (1982). Multivariate Calibration. J.R. Statist. Soc. B 44, 287–321 (with discussion).

    Google Scholar 

  3. Clark, R.M. (1979). Calibration, Cross-validation and Carbon-14.I. J.R. Statist. Soc. A142, 47–62.

    Google Scholar 

  4. Clark, R.M. (1980). Calibration, Cross-validation and Carbon 14.II J.R. Statist. Soc. A143, 177–194.

    Google Scholar 

  5. Frank, I.E., Friedman, J.H. (1993). A Statistical View of Some Chemo-metries Regression Tools. Technometrics, 35, 109–148 (with discussion).

    Article  Google Scholar 

  6. Graybill, F. (1976). Theory and Application of the Linear Model. Duxbury Press.

    Google Scholar 

  7. Hochberg, Y., Marom, I. (1983). On Improved Calibrations of Unknowns in a System of Quality-Controlled Assays. Biometrics, 39, 97–108.

    Article  Google Scholar 

  8. Hunter, W.G. (1981). Statistics and Chemistry, and the Linear Calibration Problem. Chemometrics. Mathematics and Statistics in Chemistry, Kowalski, B.R. (ed.), 97-114.

    Google Scholar 

  9. Kafadar, K. (1994). An Application of Nonlinear Regression in Research and Development: A Case Study from the Electronics Industry. Technometrics, 36, 237–248.

    Article  Google Scholar 

  10. Kalotay, A.J. (1971). Structural Solution to the Linear Calibration Problem. Technometrics, 13, 761–769.

    Article  Google Scholar 

  11. Kanatani, K. (1992). Statistical Analysis of Focal-Length Calibration Using Vanishing Points. IEEE Transactions on Robotics and Automation, 8, 767–775.

    Article  Google Scholar 

  12. Kitsos, C.P., Muller, C.H. (1995). Robust Linear Calibration. Statistics, 27, 93–106.

    Article  Google Scholar 

  13. Kitsos, C.P. (1992). Quasi-sequential procedures for the calibration problem. In Compstat 1992, Y. Dodge and J. Whittaker (eds.), Physica-Verlag, 2, 227-231.

    Google Scholar 

  14. Kitsos, C.P. (1998). Calibration. In the Encyclopedia of Statistical Sciences, Update Vol. 3. S. Kotz, C. Read and D. Banks, eds. To appear.

    Google Scholar 

  15. Kurtz, D. (1983). The Use of Regression and Statistical Methods to Establish Calibration Graphs in Chromatography. Analytica Chimica Acta, 150, 105–114.

    Article  Google Scholar 

  16. Leary, J.J., Messick, E.B. (1985). Constrained Calibration Curves: A Novel Application of Lagrange Multipliers in Analytical Chemistry. Analytical Chemistry. 57, 956–957.

    Article  Google Scholar 

  17. Lwin, T., Maritz, J.S. (1980). A Note on the Problem of Statistical Calibration. Applied Statistics, 29, 135–141.

    Article  Google Scholar 

  18. Lwin, T., Maritz, J.S. (1982). An Analysis of the Linear-Calibration Controversy from the Perspective of Compound Estimation. Technometrics, 24, 235–242.

    Article  Google Scholar 

  19. Lwin, T., Spiegelman, C.H. (1986). Calibration with Working Standards. Applied Statistics, 35, 256–261.

    Article  Google Scholar 

  20. Merkle, W. (1983). Statistical Methods in Regression and Calibration Analysis of Chromosome Aberration Data. Radiation and Environmental Biophysics, 21, 217–233.

    Article  Google Scholar 

  21. Miller, J.N. (1991). Basic Statistical Methods for Analytical Chemistry. Part 2. Calibration and Regression Methods. A Review. Analyst, 116, 3–14.

    Google Scholar 

  22. Naes, T., Irgens, C, Martens, H. (1986). Comparison of Linear Statistical Methods for Calibration of NIR Instruments. Applied Statistics, 35, 195–206.

    Article  Google Scholar 

  23. Osborne, C. (1991). Statistical Calibration: A review. International Statistical Review, 59, 309–336.

    Article  Google Scholar 

  24. Oman, S.D., Wax, Y. (1984). Estimating Fetal Age by Ultrasound Measurements: An Example of Multivariate Calibration. Biometrics, 40, 947–960.

    Article  Google Scholar 

  25. Pevoto, L.F., Converse, J.G. (1991). Decisions to Change Analyzer Calibration Based on Statistical Quality Control Charts. ISA Transactions, 30, 79–91.

    Article  Google Scholar 

  26. Schwartz, L.M. (1978). Statistical Uncertainties of Analyses by Calibration of Counting Measurements. Analytical Chemistry, 50, 980–985.

    Article  Google Scholar 

  27. Schwartz, L.M. (1979). Calibration Curves with Nonuniform Variance. Analytical Chemistry, 51, 723–727.

    Article  Google Scholar 

  28. Sjostrom, M., Wold, S., Lindberg, W., Persson, J., Martens, H. (1983). A Multivariate Calibration Problem in Analytical Chemistry Solved by Partial Least-Squares Models in Latent Variables. Analytica Chimica Acta, 150, 61–70.

    Article  Google Scholar 

  29. Smith, J. (1990). Statistical Aspects of Measurement and Calibration. Computers ind. Eng., 18. 365–371.

    Article  Google Scholar 

  30. Spiegelman, C., Watters, R., Hungwu, L. (1991). A Statistical Method for Calibrating Flame Emission Spectrometry which Takes Account of Errors in the Calibration Standards. Chemometrics and Intelligent Laboratory Systems, 11, 121–130.

    Article  Google Scholar 

  31. Srivastava, V., Singh, N. (1989). Small-Disturbance Asymptotic Theory for Linear Calibration Estimators. Technometrics, 31, 373–378.

    Article  Google Scholar 

  32. Sundberg, R. (1988). Interplay between Chemistry and Statistics, with Special Reference to Calibration and the Generalized Standard Addition Method. Chemometrics and Intelligent Laboratory Systems, 4, 299–305.

    Article  Google Scholar 

  33. Vecchia, D., Iyer, H., Chapman, P. (1989). Calibration with Randomly Changing Standard Curves. Technometrics, 31, 83–90.

    Article  Google Scholar 

  34. Walters, F., Rizzuto, G.T. (1988). The Calibration Problem in Statistics and its Application to Chemistry. Analytical Letters, 21(11), 2069–2076.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kitsos, C.P., Ninni, V.L. (1997). The Calibration Problem in Industry. In: Kitsos, C.P., Edler, L. (eds) Industrial Statistics. Contributions to Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-59268-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59268-3_2

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1042-4

  • Online ISBN: 978-3-642-59268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics