• Gerhard Lagaly
  • Oliver Schulz
  • Ralf Zimehl


Die Stabilität elektrostatisch oder überwiegend elektrostatisch stabilisierter Dispersionen wird durch das Potential ψ d an der Grenze zur diffusen Ionenschicht bestimmt (s. Abb. 2.6, Kap. 2.3.2 und Abb. 9.4). Im allgemeinen ist jedoch nur die Oberflächenladung, genauer die Oberflächenladungsdichte, experimentell zugänglich. Aus dieser läßt sich das Oberflächenpotential ψ 0 nach Gleichung 2.10 ausrechnen, aus dem ψ d nach dem Stern-Modell ermittelt werden kann (Kap. 2.3.2).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson SJ, und Sposito G, (1991) Cesium adsorption method for measuring accessible structural surface charge. Soil Sci Soc Am J 55: 1569–1576CrossRefGoogle Scholar
  2. Bandosz TJ, Jagiello J, Contescu C, und Schwarz JA, (1993) Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon 31: 1193–1202Google Scholar
  3. Bandosz TJ, Jagiello J, Putyera K, und Schwarz JA, (1994) Characterization of acidity of pillared clays by proton affinity distribution and DRIFT spectroscopy. J Chem Soc, Faraday Trans 90: 3573–3578Google Scholar
  4. Barron W, Murray BS, Scales PJ, Healy TW, Dixon DR, und Pascoe M, (1994) The streaming current detector: a comparison with conventional electrokinetic techniques. Colloids Surfaces A 88: 129–139CrossRefGoogle Scholar
  5. Barrow NJ, und Bowden JW, (1987) A comparision of models for describing the adsorption of anions on a variable charge mineral surface. J Coll Interf Sci 119: 236–250CrossRefGoogle Scholar
  6. Böhmer MR, und Koopal LK, (1992) Adsorption of ionic surfactants on variable-charge surfaces. Langmuir 8: 2649–2659; 2660–2665CrossRefGoogle Scholar
  7. Chhabra R, Pleysier J, und Cremers A, (1975) The measurement of the cation exchange capacity and exchangeable cations in soils: a new method. Proc Internat Clay Conf. Appl Publ Ltd, Wilmette, Illinois 60091, pp 439–449Google Scholar
  8. Chorover J, und Sposito G, (1995) Surface charge characteristics of kaolinitic tropical soils. Geochim Cosmochim Acta 59: 875–884CrossRefGoogle Scholar
  9. Fokkink LGK, Keizer A de, und Lyklema J, (1989) Temperature dependence of the electrical double layer on oxides: rutile and hematite. J Coll Interf Sci 127: 116–131CrossRefGoogle Scholar
  10. Furlong DN, Freeman PA, und Lau ACM, (1981) The adsorption of soluble silica at solid-aqueous solution interfaces. I. Leaching from glass ¡ª an electrokinetic study. J Coll Interf Sci 80: 20–31CrossRefGoogle Scholar
  11. Goldberg S (1992) Use of surface complexation models in soil chemical systems. Advan Agronomy, vol 47, pp 233–329CrossRefGoogle Scholar
  12. Goloub TP, Koopal LK, Bijsterbosch BH, und Sidoraova MP, (1996) Adsorption of cationic surfactants on silica. Surface charge effects. Langmuir 12: 3188–3194CrossRefGoogle Scholar
  13. Hesleitner P, Babić D, Kallay N, und Matijević E, (1987) Adsorption at solid/solution interfaces. 3. Surface charge and potential of colloidal hematite. Langmuir 3: 815–820CrossRefGoogle Scholar
  14. Hiemstra T, Riemsdijk van WH, und Bolt GH, (1989) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. J Coll Interf Sci 133: 91–104CrossRefGoogle Scholar
  15. Hlavacek M, Chenevire P, Sardin M, und Dodds J, (1995) Interpretating titration data of aqueous latices by coupling ionization and ion-exchange equilibria. Colloids Surfaces A 95: 101–111CrossRefGoogle Scholar
  16. Homola A, und James RO, (1977) Preparation and characterization of amphoteric polystyrene latices. J Coll Interf Sci 59: 123–134CrossRefGoogle Scholar
  17. Jagiello J, Bandosz TJ, Putyera K, und Schwarz JA, (1995) Determination of proton affinity distributions for chemical systems in aqueous environments using a stable numerical solution of the adsorption integral equation. J Coll Interf Sci 172: 341–346CrossRefGoogle Scholar
  18. Jasmund K, und Lagaly G, (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, DarmstadtCrossRefGoogle Scholar
  19. Kallay N, Babić D, und Matijević E, (1986) Adsorption at solid/solution interfaces. II. Colloids Surfaces 19: 375–386Google Scholar
  20. Kallay N, Hlady V, Jednaćak-Bisćan, und Milonjić S, (1993) Techniques for the study of adsorption from solution. In: Rossiter BW; Baetzold RC (eds) Investigations of surfaces and interfaces. Part A. Physical methods of chemistry series, 2nd edn. John Wiley & Sons, vol IXA, pp 73–140Google Scholar
  21. Koopal LK (1996) Mineral hydroxides: from homogeneous to heterogeneous modelling. Electrochim Acta 41: 2293–2306CrossRefGoogle Scholar
  22. Koopal LK, Riemsdijk WH van und Roffey MG (1987) Surface ionization and complexation models: a comparison of methods for determining model parameters. J Coll Interf Sci 118: 117–136CrossRefGoogle Scholar
  23. Lagaly G (1981) Characterization of clays by organic compounds. Clay Min 16: 1–21CrossRefGoogle Scholar
  24. Lagaly G (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen. In: Tributh H; Lagaly G (Hrsg) Identifizierung und Charakterisierung von Tonmineralen. Ber Dtsch Ton-und Tonmineralgruppe, GießenGoogle Scholar
  25. Lagaly G (1994) Layer charge determination by alkylammonium ions. In: Mermut AR (ed) Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures. The Clay Min Soc, Boulder, CO, USA, vol 6, pp 1–46Google Scholar
  26. Lyklema J (1984) Points of zero charge in the presence of specific adsorption. J Coll Interf Sci 99: 109–117CrossRefGoogle Scholar
  27. Lyklema J (1989) Discrimination between physical and chemical adsorption of ions on oxides. Colloids Surfaces 37: 197–204CrossRefGoogle Scholar
  28. Lyklema J (1991) Fundamentals of interface and colloid science. I. Fundamentals. Acad Press, LondonGoogle Scholar
  29. Lyklema J (1995) Fundamentals of interface and colloid science. II. Solid-liquid interfaces. Acad Press, LondonGoogle Scholar
  30. Ottewill RH und Shaw JN (1967) Studies on preparation and characterization of monodisperse polystyrene latices. Koll Z Z Polym 218: 34–40CrossRefGoogle Scholar
  31. Peigneur P, Maes A und Cremers A (1975) Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays Clay Min 23: 71–75CrossRefGoogle Scholar
  32. Rhodes CN und Brown DR (1994) Rapid determination of the cation capacity of clays using Co(11). Clays Clay Min 29: 799–801Google Scholar
  33. Righetto L, Azimonti G, Missana T und Bidoglio G (1995) The triple layer model revised. Colloids Surfaces A 95: 141–157CrossRefGoogle Scholar
  34. Rytwo G, Serban C, Nir S und Margulies L (1991) Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Min 39: 551–555CrossRefGoogle Scholar
  35. Schulz SF, Gisler T, Borkovec M und Sticher H (1994) Surface charge on functionalized latex spheres in aqueous colloidal suspensions. J Coll Interf Sci 164: 88–98CrossRefGoogle Scholar
  36. Sonnefeld J, Göbel A und Vogelsberger W (1995) Surface charge density of spherical silica particles in aqueous alkali chloride solutions. Part 1, 2. Colloid Polym Sci 271: 926–931; 932–938CrossRefGoogle Scholar
  37. Sposito G (1983) On the surface complexation model of the oxide-aqueous solution interface. J Coll Interf Sci 91: 329–340CrossRefGoogle Scholar
  38. Stone-Masui J und Watillon A (1975) Characterization of surface charge on polystyrene latices. J Coll Interf Sci 52: 479–503CrossRefGoogle Scholar
  39. Weiss A (1958) Über das Kationenaustauschvermögen der Tonminerale. I, II. Z Anorg Allg Chem 297: 232–256; 258–286Google Scholar
  40. Wilson MJ (ed) (1987) A handbook of determinative methods in clay mineralogy. Blackie, Glasgow, LondonGoogle Scholar
  41. Yates DE, Levine S und Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc, Faraday Trans I. 70: 1807–1818CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gerhard Lagaly
    • 1
  • Oliver Schulz
    • 1
  • Ralf Zimehl
    • 1
  1. 1.Institut für Anorganische ChemieChristian-Albrechts-UniversitätKielGermany

Personalised recommendations