Advertisement

Teilchengröße

  • Gerhard Lagaly
  • Oliver Schulz
  • Ralf Zimehl

Zusammenfassung

Abgesehen von der Lichtstreuung in Lösung decken die verschiedenen Methoden zur Teilchengrößenbestimmung unterschiedliche Größenbereiche ab (Abb. 8.1). Die wichtigste mikroskopische Methode ist die Elektronenmikroskopie. Zukunfts-weisend ist die Röntgenmikroskopie, weil die Teilchen in situ in ihrer wäßrigen Umgebung untersucht werden können (Kap. 8.3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen T (1993) Particle size measurement. Chapman and Hall, LondonGoogle Scholar
  2. Allen T (1997) Particle size measurements. Chapman and Hall, London, vol 1, vol 2Google Scholar
  3. Apfel U, Grunder R und Ballauff (1994) A turbidity study of particle interaction in latex sus-pensions. Colloid Polym Sci 272: 820–829CrossRefGoogle Scholar
  4. Arner EC und Kirkland JJ (1992) Sedimentation field flow fractionation. In: Harding SE; Rowe AJ; Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. pp 208–227Google Scholar
  5. Auweter H und Horn D (1985) Fiber-optical quasi-elastic light scattering of concentrated dispersions. J Coll Interf Sci 105: 399–409CrossRefGoogle Scholar
  6. Bailey L, Keall M, Audibert A und Lecourtier J (1994) Effect of clay/polymer interactions on shale stabilization during drilling. Langmuir 10: 1544–1549CrossRefGoogle Scholar
  7. Blau P und Zollars RL (1996) Sedimentation field-flow fractionation of nonspherical particles. J Coll Interf Sci 183: 476–483CrossRefGoogle Scholar
  8. Bolt GH und Warkentin BP (1958) The negative adsorption of anions by clay suspensions. Kolloid Z 156: 41–46CrossRefGoogle Scholar
  9. Chan DYC, Pashley RM und Quirk JP (1984) Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays Clay Min 32: 131–138CrossRefGoogle Scholar
  10. Chang FRC und Sposito G (1994) The electrical double layer of a disk-shaped clay mineral par-ticle: effect of particle size. J Coll Interf Sci 163: 19–27CrossRefGoogle Scholar
  11. Chang FRC und Sposito G (1996) The electrical double layer of a disk-shaped clay mineral particle: effects of electrolyte properties and surface charge density. J Coll Interf Sci 178: 555–564CrossRefGoogle Scholar
  12. Edwards DG, Posner AM und Quirk JP (1965) Repulsion of chloride ions by negatively charged clay surfaces. I, II, III. Trans Faraday Soc 61: 2808–2815; 2816–2819; 2819–2823Google Scholar
  13. Edwards DG und Quirk JP (1962) Repulsion of chloride by montmorillonite. J Coll Sci 17: 872–882CrossRefGoogle Scholar
  14. Eliçabe GE und Garciá-Rubio LH (1989) Latex particle size distribution from turbidimetry using inversion techniques. J Coll Interf Sci 129: 192–200CrossRefGoogle Scholar
  15. Esker van den MWJ und Pieper JHA (1975) Latex particle size by light absorption. In: van Ol-phen H; Mysels KJ (eds) Physical chemistry: enriching topics from colloid and surface science. Theorex, La Jolla, California, pp 175–180Google Scholar
  16. Ferreiro EA, Helmy AK und de Bussetti SG (1995) Interaction of Fe-oxyhydroxide colloidal particles with montmorillonite. Clay Min 30: 195–200CrossRefGoogle Scholar
  17. Filella M, Zhang J, Newman ME und Buffle J (1997) Analytical applications of photon correla-tion spectroscopy for size distribution measurements of natural colloidal suspensions: capabi-lities and limitations. Colloids Surfaces A 120: 27–46CrossRefGoogle Scholar
  18. Giddings JC, Ratanathanawongs SK, Barman BN, Moon MH, Liu G, Tjelta BL und Hansen ME (1994) Characterization of colloidal and particulate silica by field flow fractionation. In: Bergna HE (ed) The colloid chemistry of silica. Adv chew ser 234. Am Chem Soc, Wa-shington, pp 309–340CrossRefGoogle Scholar
  19. Gregg SJ und Sing KSW (1982) Adsorption, surface area and porosity. Acad Press, London; siehe auch Auflage von 1967Google Scholar
  20. Hinds IC, Ridler PJ und Jennings BR (1996) Electric birefringence for monotoring size changes in clay suspensions. Clay Min 31: 549–556CrossRefGoogle Scholar
  21. Hofmann U (1962) Die chemischen Grundlagen der griechischen Vasenmalerei. Angew Chem 74: 397–442CrossRefGoogle Scholar
  22. Horn D, Auweter H, Ditter W und Eisenlauer J (1986) Laser-optical methods for the characterization of disperse systems. In: Parfitt GD; Patsis AV (eds) Organic coatings. Science and technology. M Dekker, New York, Basel, vol 8, pp 251–277Google Scholar
  23. Hul van den HJ (1982) Negative adsorption of co-ions from spherical particles. J Coll Interf Sci 86: 173–177CrossRefGoogle Scholar
  24. Hul van den HJ (1983) Estimation of outer Helmholtz plane potentials from negative adsorption of co-ions. J Coll Interf Sci 92: 217–221CrossRefGoogle Scholar
  25. Hunter RJ (1991) Foundations of colloid science vol I. Clarendon Press, OxfordGoogle Scholar
  26. Hunter RJ (1993) Introduction to modern colloid science. Oxford Univ Press, OxfordGoogle Scholar
  27. Jahn W und Strey R (1988) Microstructure of microemulsions by freeze fracture electron mi-croscopy. J Phys Chem 92: 2294–2301CrossRefGoogle Scholar
  28. Jasmund K und Lagaly G (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, DarmstadtCrossRefGoogle Scholar
  29. Jennings BR (1993) Size and thickness measurement of polydisperse clay samples. Clay Min 28: 485–494CrossRefGoogle Scholar
  30. Jennings BR und Parslow K (1988) Particle size measurement: the equivalent spherical diame-ter. Proc Roy Soc London A 419: 137–149CrossRefGoogle Scholar
  31. Karlsson O, Hassander H und Wesslén B (1995) Particle size measurements of heterogeneous film-forming latices. J Colloid Polym Sci 273: 496–504CrossRefGoogle Scholar
  32. Killmann E, Sapuntzjis P und Maier H (1992) Dynamic light scattering for characterization of latices. Makromol Chem, Macromol Symp 61: 42–58CrossRefGoogle Scholar
  33. Lange H (1968) Bestimmung von Teilchengrößen aus Trübung und Brechungsinkrement. Koll Z Z Polym 223: 24–30CrossRefGoogle Scholar
  34. Lange H (1995) Comparative test of methods to determine particle size and particle size distri-bution in the submicron range. Part Part Syst Charact 12: 148–157CrossRefGoogle Scholar
  35. Lyklema J (1991) Fundamentals of interface and colloid science. I. Fundamentals. Acad Press, LondonGoogle Scholar
  36. McFadyen P und Fairhurst D (1993) High-resolution particle size analysis from nanometers to microns. Clay Min 28: 531–537CrossRefGoogle Scholar
  37. Niemeyer J, Thieme J, Guttmann P, Wilhein T, Rudolph D und Schmahl G (1994) Direct imaging of aggregates in aqueous clay-suspensions by X-ray microscopy. Progr Colloid Polym Sci 95: 139–142CrossRefGoogle Scholar
  38. Noll W (1975) Bemalung antiker Keramik. Angew Chem 87: 639–651CrossRefGoogle Scholar
  39. Noll W (1980) Chemie vor unserer Zeit: antike Pigmente. Chemie uns Zeit 14: 37–43CrossRefGoogle Scholar
  40. Noll W (1982) Techniken der Dekoration antiker Keramik. Ber DKG, 17–25Google Scholar
  41. Oakley DM, Jennings BR, Waterman DR und Fairey RC (1982) An electrooptic birefringence fine-particle sizer. J Phys E Sci Instrum 15: 1077–1082CrossRefGoogle Scholar
  42. Parslow K und Jennings BR (1986) Simultaneous size and thickness measurements for heterogeneous micrometre-sized particles. J Phys D Appl Phys 19: 1233–1243CrossRefGoogle Scholar
  43. Provder T (ed) (1991) Particle size distribution. II. ACS Symp Ser 472. Amer Chem Soc, WashingtonCrossRefGoogle Scholar
  44. Ristori GG, Sparvoli E, Landi L und Martelloni C (1989) Measurement of specific surface areas of soils by p-nitrophenol adsorption. Appl Clay Sci 4: 521–532CrossRefGoogle Scholar
  45. Schoeman BJ, Sterte J und Otterstedt JE (1994) The synthesis of colloidal zeolite hydroxysodalite sols by homogeneous nucleation. Zeolites 14: 208–216CrossRefGoogle Scholar
  46. Schoeman BJ, Sterte J und Otterstedt JE (1995) Dynamic light scattering applied to the synthesis of colloidal zeolite. J Porous Mat 1: 185–198CrossRefGoogle Scholar
  47. Schofield RK (1947) Calculation of surface areas from measurements of negative adsorption. Nature 160: 408–410CrossRefGoogle Scholar
  48. Schofield RK (1949) Calculation of surface areas of clays from measurements of negative adsorption. Trans Brit Ceram Soc 48: 207–213Google Scholar
  49. Schofield RK und Samson HR (1954) Flocculation of kaolinite due to the attraction of oppositively charged crystal faces. Discuss Faraday Soc 18: 135–145CrossRefGoogle Scholar
  50. Schramm LL und Kwak JCT (1982) a) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspensions. Clay Clay Min 30: 40–48CrossRefGoogle Scholar
  51. Schramm LL und Kwak JCT (1982) b) Interactions in clay suspensions: the distribution of ions in suspension and the influence of tactoid formation. Colloids Surfaces 3: 43–60CrossRefGoogle Scholar
  52. Siedentopf H und Zsigmondy R (1903) l. Über die Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 10 (4. F): 1–39Google Scholar
  53. Slepetys RA und Cleland AI (1993) Determination of shape of kaolin pigment particles. Clay Min 28: 495–508CrossRefGoogle Scholar
  54. Thieme J, Niemeyer J, Guttmann P, Wilhein T, Rudolph D und Schmahl G (1994) X-ray microscopy studies of aqueous colloidal systems. Progr Colloid Polym Sci 95: 135–138CrossRefGoogle Scholar
  55. Thomas JC und Fairhurst D (1991) High resolution particle size analysis of coating materials. In: Sharma MK; Micale El (eds) Surface phenomena and fine particles in water-based coatings and printing technology. Plenum Press, New York, pp 213–224CrossRefGoogle Scholar
  56. Tributh H und Lagaly G (1986) Aufbereitung und Identifizierung von Boden-und Lagerstätten-tonen. II. Korngrößenanalyse und Gewinnung von Tonsubfraktionen. GIT-Fachzeitschrift für das Laboratorium 30: 771–776Google Scholar
  57. Uzgiris EE (1981) Laser doppler spectroscopy: applications to cell and particle electrophoresis. Advan Coll Interf Sci 14: 75–171CrossRefGoogle Scholar
  58. Vali H und Bachmann L (1988) Ultrastructure and flow behavior of colloidal smectite dispersions. J Coll Interf Sci 126: 278–291CrossRefGoogle Scholar
  59. Verdurmen EM, Albers JG und German AL (1994) Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge. Colloid Polym Sci 272: 57–63CrossRefGoogle Scholar
  60. Weiner BB, Tscharnuter W und Fairhurst D (1994) Accurate particle sizing of high density materials to 10 nm using an X-ray disc centrifuge with a moving source detector. In: Bose A; Dowding RJ (eds) Tungsten and Refractory Metals. Proceedings of the 2nd int conf on tungsten and refractory metals. Metal Powder Industries Federation, Princeton, NJ, vol 2, pp 727–735Google Scholar
  61. Williams PS, Xu Y, Pierluigi R und Giddings JC (1997) Colloid characterization by sedimentation field-flow fractionation: correction for particle-wall interaction. Ann Chem 69: 349–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gerhard Lagaly
    • 1
  • Oliver Schulz
    • 1
  • Ralf Zimehl
    • 1
  1. 1.Institut für Anorganische ChemieChristian-Albrechts-UniversitätKielGermany

Personalised recommendations