Advertisement

Stabilitätsmessungen

  • Gerhard Lagaly
  • Oliver Schulz
  • Ralf Zimehl

Zusammenfassung

Elektrostatisch stabilisierte Dispersionen werden durch Zugabe von Salzen, pH-Änderung und durch Zusatz von Flüssigkeiten mit niedrigen Dielektrizitätskonstanten destabilisiert (Kap. 3.9). Sterisch stabilisierte Dispersionen sprechen weniger auf Salzzusatz an, reagieren aber auf eine Verschlechterung der Lösungsmittelgüte und können mit steigender oder sinkender Temperatur instabil werden (Kap. 4.11).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barclay LM und Ottewill RH (1970) Measurement of forces between colloidal particles. Spec Disc Faraday Soc, 138–147Google Scholar
  2. Bensley CN und Hunter RI (1982) The effect of particle volume fraction on the critical coagulation concentration. J Coll Interf Sci 88: 546–561CrossRefGoogle Scholar
  3. Bibeau AA und Matijevié E (1973) Stability of polyvinyl chloride latex. III. Effects of simple electrolytes. J Coll Interf Sci 43: 330–338CrossRefGoogle Scholar
  4. Bleier A und Matijevié E (1978) Heterocoagulation. Part 3. Interactions of polyvinyl chloride latex with ludox HS silica. Chem Soc Faraday Trans I, 74: 1346–1359Google Scholar
  5. Claesson PM, Ederth T, Bergeron V und Rutland MW (1996) Techniques for measuring surface forces. Advan Coll Interf Sci 67: 119–183CrossRefGoogle Scholar
  6. Cowell C, Li-In-On R und Vincent B (1978) Reversible flocculation of sterically-stabilised dispersions. J Chem Soc Faraday I, 74: 337–347Google Scholar
  7. Cowell C und Vincent B (1982) The stability of polystyrene latices in the presence of poly(ethylene oxide). In: Tadros TF (ed) The effect of polymers on dispersion properties. Acad Press, London, pp 263–284Google Scholar
  8. Cowell C und Vincent B (1983) Flocculation kinetics und equilibria in sterically stabilized dispersions. J Coll Interf Sci 95: 573–582CrossRefGoogle Scholar
  9. Ditter W, Eisenlauer J und Horn D (1982) Laser optical method for dynamic flocculation testing in flowing dispersions. In: Tadros TF (ed) The effect of polymers on dispersion properties. Acad Press, London, pp 323–342Google Scholar
  10. Ehringhaus A (1934) Objektive Demonstrationen mit Rutilsuspensionen. Naturwiss 22: 149–150CrossRefGoogle Scholar
  11. Fernández-Barbero A, Martin-Rodriguez A, Callejas-Fernandez J und Hidalgo-Alvarez R (1994) On the calculation of electrokinetic potential und Hamaker constant of model colloids. J Coll Interf Sci 162: 257–260CrossRefGoogle Scholar
  12. Gildnyi T, Horvath-Szabo G und Wolfram E (1984) Experimental determination of the state equation of dispersions by a new centrifugal compression method. J Coll Interf Sci 98: 72–77CrossRefGoogle Scholar
  13. Hogg R, Healy TW und Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62: 1638–1651CrossRefGoogle Scholar
  14. Hollricher S (1994) Kolloidchemische Untersuchungen an carboxylierten Homostyroldispersionen. Diplomarbeit. Univ KielGoogle Scholar
  15. Holz M und Sörensen M (1992) Direct detection of an attractive interaction between anions and hydrophobically hydrated unpolar groups. Ber Bunsenges Phys Chem 96: 1441–1447CrossRefGoogle Scholar
  16. Homola A und Robertson AA (1976) A compression method for measuring forces between col-loidal particles. J Coll Interf Sci 54: 286–297CrossRefGoogle Scholar
  17. Honig EP, Roebersen GJ und Wiersema PH (1971) Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J Coll Interf Sci 36: 97–109CrossRefGoogle Scholar
  18. Horn D, Auweter H, Ditter W und Eisenlauer J (1986) Laser optical methods for the characterization of disperse systems. In: Parfitt GD; Patsis AV (eds) Organic coatings. Science und Technology. Marcel Dekker, New York und Basel, vol 8, pp 251–277Google Scholar
  19. Hunter RJ (1991) Foandations of colloid science. Clarendon Press, Oxford, vol I, IIGoogle Scholar
  20. Israelachvili J (1994) Intermolecular und surface forces. Acad Press, LondonGoogle Scholar
  21. Jeffrey GC und Ottewill RH (1988) Reversible aggregation. Part I. Reversible flocculation monitored by turbidity measurements. Colloid Polym Sci 266: 173–179CrossRefGoogle Scholar
  22. Killmann E und Adolph H (1995) Coagulation und flocculation measurements by photon correlation spectroscopy - colloidal SiO2 bare and covered by polyethylene oxide. Colloid Polym Sci 273: 1071–1079CrossRefGoogle Scholar
  23. Long JA, Osmond DWJ und Vincent B (1973) The equilibrium aspects of weak flocculation. J Coll Interf Sci 42: 545–553CrossRefGoogle Scholar
  24. Maroto JA und de las Nieves FJ (1995) Optimization of the heterocoagulation process of polymer colloids with different particle size. Colloids Surfaces A 96: 121–133CrossRefGoogle Scholar
  25. Mathai KG und Ottewill RH (1966) Stability of hydrophobic sols in the presence of non-ionic surface-active agents. Part 2. Stability of silver iodide sols in the presence of non-ionic surface-active agents. Trans Faraday Soc 62: 759–769CrossRefGoogle Scholar
  26. Matijevie E und Kitazawa Y (1983) Heterocoagulation. VII. Interactions of rod-like jIFeO(OH) with spherical latex particles. Coll Polym Sci 261: 527–534CrossRefGoogle Scholar
  27. Mielke M (1996) Wechselwirkung kolloidaler Polymere mit organischen Gegenionen. Diplomarbeit. Univ KielGoogle Scholar
  28. Oster G (1947) Light scattering from polymerizing and coagulating systems. J Coll Sci 2: 291–299CrossRefGoogle Scholar
  29. Ottewill RH (1977) Stability and instability in disperse systems. J Coll Interf Sci 58: 357–373CrossRefGoogle Scholar
  30. Ottewill RH, Rastogi MC und Watanabe A (1960) The stability of hydrophobic sols in the pre- sence of surface-active agents. Part I. Theoretical treatment. Trans Faraday Soc 56: 854–865CrossRefGoogle Scholar
  31. Ottewill RH und Satgurunathan R (1995) Nonionic latices in aqueous media. Part 4: preparation and characterization of electrosterically stabilised particles. Colloid Polym Sci 273: 379–386CrossRefGoogle Scholar
  32. Ottewill RH und Shaw JN (1966) Stability of monodisperse polystyrene latex dispersions of va- rious sizes. Disc Faraday Soc 42: 154–163CrossRefGoogle Scholar
  33. Ottewill RH und Watanabe A (1960) a) Studies on the mechanism of coagulation. Part I. The stability of positive silver iodide sols in the presence of anionic surface active agents. Kolboid Z 170: 38–47CrossRefGoogle Scholar
  34. Ottewill RH und Watanabe A (1960) b) Studies on the mechanism of coagulation. Part 2. The electrophoretic behaviour of positive silver iodide sols in the presence of anionic surface active agents. Kolloid Z 170: 132–139CrossRefGoogle Scholar
  35. Perkins R, Brace R und Matijevié E (1974) Colloid und surface properties of clay suspensions. I. Laponite CP. J Coll Interf Sci 48: 417–426CrossRefGoogle Scholar
  36. Priewe J (1994) Kolloidchemische Aspekte der Darstellung and Charakterisierung sterisch stabilisierter Latexdispersionen. Dissertation. Univ KielGoogle Scholar
  37. Reerink H und Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Disc Faraday Soc 18: 74–84CrossRefGoogle Scholar
  38. Rooy N de, Bruyn PL de und Overbeek JTG (1980) Stability of dispersions in polar organic media. I. Electrostatic stabilization J Coll Interf Sci 75: 542–554CrossRefGoogle Scholar
  39. Ryde N und Matijevié E (1994) Kinetics of heterocoagulation. Part 4. Evaluation of absolute coagulation rate constants using a classical light scattering technique. J Chem Soc Faraday Trans 90: 167–171CrossRefGoogle Scholar
  40. Sasaki H, Matijevié E und Barouch E (1980) Heterocoagulation. VI. Interactions of a monodispersed hydrous aluminum oxide sol with polystyrene latex. J Coll Interf Sci 76: 319–329CrossRefGoogle Scholar
  41. Schmidt A (1987) Systematik und Eigenschaften von Latices und kolloidalen Systemen, Polymerisation und Terpolymerisation in Emulsionen. Houben-Weyl Makromolekulare Stoffe. S 227–268, Bd E20/IGoogle Scholar
  42. Sonntag H und Strenge K (1987) Coagulation kinetics und structure formation. Plenum Press, New YorkGoogle Scholar
  43. Stumm W, Huang CP und Jenkins SR (1970) Specific chemical interaction affecting the stability of dispersed systems. Croatica Chemica Acta 42: 223–244Google Scholar
  44. Tombâcz E, Deér I und Dékany I (1993) Compression study on hydrophobic layered silicates dispersed in organic liquid mixtures. Colloids Surfaces A 71: 269–276CrossRefGoogle Scholar
  45. Veeramasuneni S, Yalamanchili MR und Miller JD (1996) Measurement of interaction forces between silica and α-alumina by atomic force microscopy. J Coll Interf Sci 184: 594–600CrossRefGoogle Scholar
  46. Ven TGM van de (1988) On the role of ion size in coagulation. J Coll Interf Sci 124: 138–145CrossRefGoogle Scholar
  47. Virden JW und Berg JC (1992) The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion. J Coll Interf Sci 149: 528–535CrossRefGoogle Scholar
  48. Williams DJA und Ottewill RH (1971) The stability of silver iodide sols in the presence of polyacrylic acids of various molecular weights. Koll Z Z Polym 243: 141–147CrossRefGoogle Scholar
  49. Zimehl R und Lagaly G (1986) Coagulation of latex dispersions by inorganic salts: structural effects. Progr Colloid Polym Sci 72: 28–36CrossRefGoogle Scholar
  50. Zimehl R und Lagaly G (1987) Coagulation of latex dispersions in the presence of some organic compoands. Colloids Surfaces 22: 225–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gerhard Lagaly
    • 1
  • Oliver Schulz
    • 1
  • Ralf Zimehl
    • 1
  1. 1.Institut für Anorganische ChemieChristian-Albrechts-UniversitätKielGermany

Personalised recommendations