Skip to main content

Membrane Gas Liquid Contactors in Water and Wastewater Treatment

  • Chapter
Environmental Technologies and Trends

Part of the book series: Environmental Engineering ((ENVENG))

  • 273 Accesses

Abstract

The alleviation of environmental problems is one of the biggest challenges of technology today. The development and implantation of new separation processes may result in a “green” industrial revolution. Membrane technology has many advantages to offer in this respect. Membrane contactors are commonly hollow fibre devices used as substitutes for packed towers. As such, they are alternative industrial configurations for carrying out gas absorption or stripping and liquid-liquid extraction. This paper is limited to gas-liquid contactors. In the case of oxygenation of water, a resistance-in-series model with two resistances, the membrane and the liquid film resistance, was used to describe the oxygen transfer process. An induction of secondary flows is used to decrease the mass transfer resistance in the liquid phase and increase the oxygen flux. The study was based on a comparison between straight modules and coiled modules. For straight modules, the results are consistent with the Lévêque correlation. For coiled modules mass transfer coefficients were found to be two to four times higher than for straight modules and a new mass transfer correlation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Articles in Journals

  • Ahmed T, Semmens MJ (1992) Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J Membrane Sci 69:1–10

    Article  CAS  Google Scholar 

  • Chung KY, Bates R, Belfort G (1993) Dean vortices with wall fllux in a curved channel membrane system. J Membrane Sci 81:38

    Google Scholar 

  • Côté P (1989) Bubble-free aeration using membranes: mass transfer analysis. J Membrane Sci 47: 91–106

    Article  Google Scholar 

  • Dean WR (1927) Note on the motion of fluid in a curved pipe. Phil Mag 4(7):208–223

    Google Scholar 

  • Dorson W, Baker E, Hull H (1968) A shell and tube oxygenator. Trans Amer Soc Artif Int Organs 15: 242–249

    Google Scholar 

  • Germano M (1989) The Dean equations extended to a helical pipe flow. J Fluid Mech 203:289–305

    Article  Google Scholar 

  • Julien R and Aurelle Y (1996) Pervaporation and Membrane Stripping. 2.4. (this book)

    Google Scholar 

  • Hirasa O, Ichio H, Yamauchi A (1991) Oxygen transfer from silicone hollow fiber membrane to water. J Ferm Bio 71(3):206–207

    Article  CAS  Google Scholar 

  • Kao HC. Torsion effect on fully developed flow in a helical pipe. J Fluid Mech 184:335–356

    Google Scholar 

  • Lévêque MA (1928) Les lois de la transmission de chaleur par convection. Ann. Mines 13:201

    Google Scholar 

  • Mori Y, Nakayama W (1965) Study on forced convective heat transfer in curved pipes. Int J Heat Mass Transfer 8:67–82

    Article  Google Scholar 

  • Mori Y, Nakayama W (1967) Study on forced convective heat transfer in curved pipes. hit J Heat Mass Transfer 10:37–58

    Article  CAS  Google Scholar 

  • Murata S, Miyake Y, Inaba T (1981) Laminar flow in a helically coiled pipe. Bulletin ISME 24:355–362

    Article  Google Scholar 

  • Pankhania M, Stephenson T, Semmens MJ (1994) Hollow-fibre bioreactor for wastewater treatment using bubbleless membrane aeration. Wat Res 28(10):2233–2236

    Article  CAS  Google Scholar 

  • Psaume R, Aptel P, Aurelle Y, Mora JC, Bersillon JL (1988) Pervaporation: importance of concentration polarization in the extraction of trace organics from water. J Membrane Sci 36:373–384

    Article  CAS  Google Scholar 

  • Schock G, Miguel A (1987) Mass transfer and pressure loss in spiral-wound modules. Desalination 64:338

    Article  Google Scholar 

  • Semmens MJ, Qin R, Zander A (1989) Volatile organics separation from water using a microporous hollow fiber membrane. J AW WA:162–177

    Google Scholar 

  • Semmens MJ (1991) Bubbleless aeration. Water Eng & Man 4:8–19

    Google Scholar 

  • Tai MSL, Chua I, Li K, Ng WJ, Teo WK (1994) Removal of dissolved oxygen in ultrapure water production using microporous membrane modules. J Membrane Sci 87:99–105

    Article  CAS  Google Scholar 

  • Wang CY (1981) On the Reynolds-number flow in a helical pipe. J Fluid Mech 108:185–194

    Article  Google Scholar 

  • Winzeler HB, Belfort G (1993) Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities. J Membrane Sci 80:35–47

    Article  CAS  Google Scholar 

  • Winzeler HB (1990) Membran-filtration mit hoher Trennleistung und minimalen Energiebedarf. Chimia 44(9):288

    CAS  Google Scholar 

  • Yang MC, Cussler EL (1986) Designing hollow fiber contactors. AIChE J 32 (11):1910–1916

    Article  CAS  Google Scholar 

  • Yang MC, Cussler EL (1989) Artificial gills. J Membrane Sci 42:273–284

    Article  CAS  Google Scholar 

  • Yinkun H (1993) Removal of dissolved oxygen from feed water by deoxygen resin for industrial boiler. Water Treatment 8:55–64

    Google Scholar 

  • Zhang Q, Cussler EL (1985) Hollow fiber gas membranes. AIChE J 31(9):1548–1553

    Article  Google Scholar 

  • Zhang Q, Cussler EL (1985) Microporous hollow fibers for gas absorption. Mass transfer in the liquid. J Membrane Sci 23:321–332

    Article  Google Scholar 

  • Zhang Q, Cussler EL (1985) Microporous hollow fibers for gas absorption. Mass transfer across the membrane. J Membrane Sci 23:333–345

    Article  Google Scholar 

  • Zhu CL, Yuang CW, Fried JR, Greenberg DB (1983) Pervaporation membranes - a novel separation technique for trace organics. Environmental Progress 2 (2):132–143

    Article  CAS  Google Scholar 

Thesis

  • Wickramasinghe SR (1992) The best hollow-fibre module. University of Minnesota, USA pp 9–30

    Google Scholar 

Proceedings

  • Anselme C, Mandra V, Baudin I, Mallevialle J (1993) Optimum use of membrane processes in drinking water treatment. In Proceedings of AIDE Symposium, Budapest, Hungary

    Google Scholar 

  • Belfort G (1994) Fouling reduction through fluid mechanics and module design. In Proceedings of Seminar on Fouling in Pressure-Driven Membrane Processes. Lappeenranta, Finland

    Google Scholar 

  • Moulin P, Rouch JC, Serra C, Aptel P (1994) Mass transfer improvement by secondary flows in gaz liquid contactors. In Proceedings of XIth Annual Summer School ESMST, Glasgow, United Kingdom. September 1994

    Google Scholar 

  • Néel J (1992) Current Trends in Pervaporation. In Proceedings of the CEE- Brazil Workshop on membranes separation processes, Rio de Janeiro, Brasil

    Google Scholar 

Book with Editors

  • Aptel P. Membrane pressure driven processes in water treatment. In Membrane Processes in Separation and Purification, JG Crespo & KW Boddeker (ed), NATO ASI Series E, vol 272. Kluwer Academic Publishers. 1994, pp 263–282. ISBN 0-7923-2929-5

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aptel, P., Moulin, P., Clifton, M., Rouch, JC., Serra, C. (1997). Membrane Gas Liquid Contactors in Water and Wastewater Treatment. In: Jain, R.K., Aurelle, Y., Cabassud, C., Roustan, M., Shelton, S.P. (eds) Environmental Technologies and Trends. Environmental Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59235-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59235-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63913-5

  • Online ISBN: 978-3-642-59235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics