Skip to main content

Part of the book series: Springer Labormanual ((SPRINGER LABOR))

  • 622 Accesses

Zusammenfassung

Proteine sind als direkte Produkte der Genexpression strukturell und funktionell die vielseitigsten und zugleich mengenmäßig häufigsten Makromoleküle (über 50 % des Trockengewichts) der Zelle. Eine typische Säugetierzelle (Hepatocyt) enthält ca. 1010 Proteinmoleküle, die sich auf etwa 104 verschiedene Molekülspezies verteilen. Die verschiedenen Proteine bestimmen einmal Form und Struktur (Strukturproteine) und sind weiterhin entscheidend an Ablauf und Regulation des Stoffwechsels (Enzyme) und aller anderen fundamentalen und spezialisierten Funktionen (wie z. B. Bewegungsvorgänge, intra- und interzellulärer Stofftransport, Signaltransfer innerhalb und zwischen den Zellen, molekulare Erkennungsvorgänge und gewebsspezifische Adhäsion etc.) von Zellen und Geweben eines Organismus beteiligt. Jeder ausdifferenzierte Zelltyp eines vielzelligen Organismus hat daher neben einer Grundausstattung („Haushaltsproteine“) seinen charakteristischen Proteinanteil (zell- bzw. gewebespezifische Proteine).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Castle JD (1995) Overview of cell fractionation. In: Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (eds) Current protocols in protein science. John Wiley and Sons, Inc., New York, pp 4.1.1–4.1.9

    Google Scholar 

  • Evans WH (1987) Organelles and membranes of animal cells. In: Findlay JBC, Evans WH (eds) Biological membranes, a practical approach. IRL, Oxford New York Tokyo, pp 1–35

    Google Scholar 

  • Findlay JBC (1990) Purification of membrane proteins. In: Harris ELV, Angal S (eds) Protein purification methods, a practical approach. IRL, Oxford New York Tokyo, pp 59–82

    Google Scholar 

  • Harris ELV, Angal S (eds) (1990) Protein purification methods, a practical approach. IRL, Oxford New York Tokyo

    Google Scholar 

  • Ozols J (1990) Preparation of membrane fractions. Meth Enzymol 182:225–235

    Article  PubMed  CAS  Google Scholar 

  • Storrie B, Madden EA (1990) Isolation of subcellular organelles. Meth Enzymol 182:203–225

    Article  PubMed  CAS  Google Scholar 

  • Meisenfelder J, Hunter T (1988) Radioactive protein labelling techniques. Nature 335:120

    Article  Google Scholar 

  • Patel D (1994) Gel electrophoresis, essential data. John Wiley & Sons, Chichester New York Brisbane Toronto Singapore

    Google Scholar 

  • Albers K, Fuchs E (1992) The molecular biology of intermediate filaments. Int Rev Cytol 134:243–279

    Article  PubMed  CAS  Google Scholar 

  • Altmannsberger M (1988) Intermediärfilamentproteine als Marker in der Tumordiagnostik (Veröffentlichungen aus der Pathologie, Bd 127). Gustav Fischer, Stuttgart New York

    Google Scholar 

  • Franke WW (1993) The intermediate filaments and associated proteins. In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins. Oxford University, Oxford New York Tokyo, pp 137–143

    Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function and disease. Annu Rev Biochem 63:345–382

    Article  PubMed  CAS  Google Scholar 

  • Leube R, Kartenbeck J (1995) Molekulare Komponenten der Intermediärfilamente und ihre Verankerungsstrukturen in Epithelzellen: Differenzierungsmarker in der Gewebe-und Tumordiagnostik. In: Zeller WJ, zur Hausen H (eds) Onkologie. II-1, Ecomed, München Landsberg, pp 1–32

    Google Scholar 

  • Moll R (1993) Cytokeratine als Differenzierungsmarker: Expressionsprofile von Epithelien und epithelialen Tumoren (Veröffentlichungen aus der Pathologie, Bd 142). Gustav Fischer, Stuttgart Jena New York

    Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepier R (1982) The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultures cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing. A novel tool for surgical pathology. Lab Invest 48:372–394

    CAS  Google Scholar 

  • Osborn M, Weber K (1986) Intermediate filament proteins: a multigene family distinguishing major cell lineages. TIBS 11:469–472

    CAS  Google Scholar 

  • Achtstätter T, Hatzfeld M, Quinlan RA, Parmelee DC, Franke WW (1986) Separation of cytokeratin polypeptides by gel electrophoretic and Chromatographic techniques and their identification by immunoblotting. Meth Enzymol 134:355–371

    Article  Google Scholar 

  • Skerrow CJ, Matoltsy AG (1974) Chemical characterization of isolated epidermal desmosomes. J Cell Biol 63:524–531

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przbyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Coombs LM, Pigott D, Proctor A, Eydmann M, Denner J, Knowles MA (1990) Simultaneous isolation of DNA, RNA, and antigenic protein exhibiting kinase activity from small tumor samples using guanidin isothiocyanate. Anal Biochem 188:338–343

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal Biochem 161:156–159.

    Article  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15:532–535.

    PubMed  CAS  Google Scholar 

  • Anderson CW, Straus JW, Dudock BS (1983) Preparation of a cell-free protein-synthesizing system from wheat germ. Meth Enzymol 101:635–650

    Article  PubMed  CAS  Google Scholar 

  • Clemens MJ (1984) Translation of eukaryotic messenger RNA in cell-free extracts. In: Hames BD, Higgins SJ (eds) Transcription and translation, a practical approach. IRL, Oxford Washington, pp 231–270

    Google Scholar 

  • Colman A (1984) Translation of eukaryotic messenger RNA in Xenopus oocytes. In: Hames BD, Higgins SJ (eds) Transcription and translation, a practical approach. IRL, Oxford Washington, pp 271–302

    Google Scholar 

  • Hames BD, Higgins J (eds) (1984) Transcription and translation, a practical approach. IRL, Oxford Washington

    Google Scholar 

  • Jackson RC, Blobel G (1977) Post-translational cleavage of presecretory proteins with an extract of rough microsomes, from dog pancreas, with signal peptidase activity. Proc Natl Acad Sci USA 74:5598–5602

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Hunt T (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Meth Enzymol 96:50–75

    Article  PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl Acids Res 12:7057–7086

    Article  PubMed  CAS  Google Scholar 

  • Melton DA (1987) Translation of messenger RNA in injected frog oocytes. Meth Enzymol 152:288–296

    Article  PubMed  CAS  Google Scholar 

  • Merrick WC (1983) Translation of exogenous mRNA in reticulocyte lysates. Meth Enzymol 101:606–615

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67:247–256

    Article  PubMed  CAS  Google Scholar 

  • Roberts BE, Paterson BM (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9 S RNA in a cell free system from commercial wheat germ. Proc Natl Acad Sci USA 70:2230–2334

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Scheele G (1983) Methods for the study of protein translocation across the RER membranes using the reticulocyte lysate translation system and canine pancreatic microsomal membranes. Meth Enzymol 96:94–111

    Article  PubMed  CAS  Google Scholar 

  • Spedding G (ed) (1990) Ribosomes and protein synthesis, a practical approach. IRL, Oxford New York Tokyo

    Google Scholar 

  • Walter P, Blobel G (1983) Preparation of microsomal membranes for cotranslational protein translocation. Meth Enzymol 96:84–93

    Article  PubMed  CAS  Google Scholar 

  • Åkerstrom B, Brodin T, Reis K, Björck L (1985) Protein G: A powerful tool for binding and detection of monoclonal and polyclonal antibodies. J Immunol 135:2589–2592

    PubMed  Google Scholar 

  • Åkerstrom B, Björck L (1986) A physicochemical study of protein G, a molecule with unique immunoglobin G-binding properties. J Biol Chem 261:10240–10247

    PubMed  Google Scholar 

  • Anderson DJ, Blobel G (1983) Immunoprecipitation of proteins from cell-free translations. Meth Enzymol 96:111–120

    Article  PubMed  CAS  Google Scholar 

  • Firestone GL, Winguth SD (1990) Immunoprecipitation of proteins. Meth Enzymol 182:688–700

    Article  PubMed  CAS  Google Scholar 

  • Goding JW (1978) Use of staphylococcal protein A as an immunological reagent. J Immunol Methods 20:241–253

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Kessler SW (1975) Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A. J Immunol 115:1617–1623

    PubMed  CAS  Google Scholar 

  • Kessler SW (1981) Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens. Meth Enzymol 73:441–459

    Google Scholar 

  • Langone JJ (1982) Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumococci. Adv Immunol 32:157–252

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran S, Park S, Bernard A, Morris JF, Rauscher III FJ, Hill DE, Haber DA (1993) Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci USA 90:5100–5104

    Article  PubMed  CAS  Google Scholar 

  • Moks T, Abrahamsen L, Nilsson B, Hellman U, Sjöquist J, Uhlen M (1986) Staphylococcal Protein A consists of five IgG-binding domains. Eur J Biochem 156:637–643

    Article  PubMed  CAS  Google Scholar 

  • Richman DD, Cleveland PH, Oxman MN, Johnson M (1982) The binding of staphylococcal protein A by the sera of different animal species. J Immunol 128:2300–2305

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual. 2nd. edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Springer TA (1991) Immunoprecipitation. In: Coligan JE, Kruisbeek AM, Margulis DH, Sherach EM, Stober W (eds) Current protocols in immunology. Greene Publishing and Wiley-Interscience, New York, pp 8.3.1–8.3.11

    Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  PubMed  CAS  Google Scholar 

  • Scopes RK (ed) (1994) Protein purification. Principles and practice. 3rd. edn. Springer, New York

    Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  • McPhie (1971) Dialysis. Meth Enzymol 22:23–33

    Article  Google Scholar 

  • Pohl T (1990) Concentration of proteins and removal of solutes. Meth Enzymol 182:68–83

    Article  PubMed  CAS  Google Scholar 

  • Bollack DM, Edelstein SJ (eds) (1991) Protein methods. Wiley-Liss, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Compton SJ, Jones CG (1985) Mechanisms of dye response and interference in the Bradford protein assay. Anal Biochem 151:369–374

    Article  PubMed  CAS  Google Scholar 

  • Guttenberger (1994) Protein determination. In: Celis JE (ed) Cell biology, a laboratory handbook. Academic Press, San Diego New York, Vol 3, pp 169–178

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Read SM, Northcote DH (1981) Minimization of variation in the response of different proteins to the Coomassie Blue G dye-binding assay for protein. Anal Biochem 116:53–64

    Article  PubMed  CAS  Google Scholar 

  • Spector T (1978) Refinement of the Coomassie Blue method of protein quantitation. A simple and linear spectrophotometric assay for <0.5 to 50 μg of protein. Anal Biochem 86:142–146

    CAS  Google Scholar 

  • Stoschek CM (1990) Quantitation of proteins. Meth Enzymol 182:50–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckert, W.A., Kartenbeck, J. (1997). Präparation von Proteinen für die Gelelektrophorese. In: Proteine: Standardmethoden der Molekular- und Zellbiologie. Springer Labormanual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59227-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59227-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47759-1

  • Online ISBN: 978-3-642-59227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics