Skip to main content

Affinity Chromatography of Proteins

  • Chapter
Protein Structure Analysis

Part of the book series: Springer Lab Manual ((SLM))

Abstract

Specific interactions between molecules are fundamental to all biological processes. In particular the interaction between proteins and specific binding components has been well established, e.g., between enzymes and their substrates, activators and inhibitors, between antibody and antigen, between some proteins and particular regions of DNA/RNA, or between receptors and their respective effector molecules such as hormones and transmitters. The technique of affinity chromatography relies on such biospecific affinity. The binding molecule which is fixed to the chromatographic matrix is called the ligand and the protein which is to be purified is called the counterligand or target protein. Specific and reversible binding to the immobilized ligand takes place via a biologically functional site on the surface of the target protein. Thus, affinity chromatography allows purification of most proteins to near homogeneity by utilizing the specific structure of the protein (for reviews see Scouten 1981; Wilchek et al. 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzi A, Bill K, Broger C (1982) Affinity chromatographic purification of cytochrome c binding enzymes. Proc Natl Acad Sci USA 79:2447–2450.

    Article  PubMed  CAS  Google Scholar 

  • Belew M, Juntti N, Larsson A and Porath J (1987) A one-step purification method for monoclonal antibodies based on salt-promoted adsorption chromatography on a thiophilic adsorbent. J Immunol Methods 102:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994) Ran-GAP1 induces GTPase activity of nuclear Ras-related RAN. Proc Natl Acad Sci USA 91:2587–2591.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Janson JC, Sparrman M (1989) Affinity chromatography. In: Janson JC, Ryden L (eds) Protein purification. VHC, New York, pp 275–329.

    Google Scholar 

  • Dean PDG, Johnson WS, Middle FA (1985) Affinity chromatography. IRL, Oxford.

    Google Scholar 

  • Eriksson KO (1989) Hydrophobic interaction chromatography. In:Janson JC, Ryden L (eds) Protein purification. VHC, New York, pp 207–226.

    Google Scholar 

  • Hansen P, and Lindberg GJ (1992) Immobilized metal ion affinity chromatography of synthetic peptides-binding via the alpha-amino group. J Chromatogr 627:125–135.

    Article  PubMed  CAS  Google Scholar 

  • Hansen P, Lindberg GJ (1995) Importance of the alpha-amino group in the selective purification of synthetic histidine peptides by immobilized metal ion affinity chromatography. J Chromatogr A 690:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Hemdan ES, Zhao YJ, Sulkowski E, Porath J (1989) Surface topography of histidine residues: A facile probe by immobilized metal ion affinity chromatography. Proc Natl Acad Sci USA 86:1811–1815.

    Article  PubMed  CAS  Google Scholar 

  • Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, London.

    Google Scholar 

  • Hutchens TW, Porath J (1986) Thiophilic adsorption of the immunoglobulins-Analysis of conditions optimal for selective immobilization and purification. Anal Biochem 159: 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Jacob L, Beecken V, Rose M, Entian KD, Bartunik LJ, Bartunik HD (1991) Purification of yeast glucokinase by immobilized metal affinity chromatography. Biological Chemistry Hoppe-Seyler 372:683.

    Google Scholar 

  • Kagedal L (1989) Immobilized metal ion affinity chromatography. In:Janson JC, Ryden L(eds) Protein purification. VHC, New York, pp 227–251.

    Google Scholar 

  • Mohr P, Pommerening K (1985) Affinity chromatography. Marcel Dekker, New York.

    Google Scholar 

  • Narayan SR, Crane LJ (1990) Affinity chromatography supports: a look at performance requirements. Trends in Biotechnology 8:12–16.

    Article  Google Scholar 

  • Peters JH, Baumgarten (eds.) (1989) Monoklonale Antikörper, Springer, Berlin, Heidelberg, New York, London.

    Google Scholar 

  • Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599.

    Article  PubMed  CAS  Google Scholar 

  • Porath J, Maisano F, Belew M (1985) Thiophilic adsorption-A new method for protein fractionation. FEBS Lett 185:306–310.

    Article  PubMed  CAS  Google Scholar 

  • Porath J, Olin B (1983) Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 22: 1621–1630.

    Article  PubMed  CAS  Google Scholar 

  • Regnier FE (1991) Perfusion chromatography. Nature 350:634–635.

    Article  PubMed  CAS  Google Scholar 

  • Schulze R, Kontermann R, Queitsch I, Dübel S, Bautz E (1994) Thiophilic adsorption chromatography of recombinant single-chain antibody fragments. Analytical Biochemistry 220:212–214.

    Article  PubMed  CAS  Google Scholar 

  • Scopes RK (1987) Dye-ligand and multifunctional adsorbents: an empirical approach to affinity chromatography. Analytical Biochemistry 165: 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Scouten WH (1981) Affinity chromatography. Wiley, London.

    Google Scholar 

  • Sulkowski E (1985) Purification of proteins by IMAC. Trends in Biotechnology 3:1–7.

    Article  CAS  Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier, Amsterdam, pp 43–78.

    Google Scholar 

  • Wilcheck M, Bayer EA (1990) Avidin-biotin technology. In: Methods Enzymol, vol. 184, Academic, London, pp 5–45.

    Google Scholar 

  • Wilchek M, Miron T, Kohn J. (1984) Affinity chromatography. In: W.B. Jakoby (ed.) Methods Enzymol, vol 104 Academic, London, pp 3–55.

    Google Scholar 

  • Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC, Boston

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wombacher, H., Jacob, L. (1997). Affinity Chromatography of Proteins. In: Kamp, R.M., Choli-Papadopoulou, T., Wittmann-Liebold, B. (eds) Protein Structure Analysis. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59219-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59219-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47765-2

  • Online ISBN: 978-3-642-59219-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics