Skip to main content

What Should a Surface in 4-Space Look Like?

  • Chapter
Visualization and Mathematics

Summary

We wish to investigate spaces of dimension greater than three and in particular surfaces in 4-dimensional space. Such surfaces can be knotted. Our explorations include mathematical and visualization tools.

Mathematically we focus on a particular example of visualization of the result of an energy flow of a knotted surface. In terms of visualization, we use sound, texture, and a slicing technique of “splayed slabs”, in addition to more traditional tools.

Basic issues of the mathematical visualization process are discussed.

Partially supported by NSF grant DMS-9505087

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Auckly and L. Sadun, A family of Möbius invariant 2-knot energies, in: Geometric Topology: The Proceedings of the Georgia International Topology Conference, Ed. W. Kazez, International Press (1996).

    Google Scholar 

  2. C. Adams, The Knot Book, W. H. Freeman and Co. (1994).

    MATH  Google Scholar 

  3. U. Axen and I. Choi, Using Additive Sound Synthesis to Analyze Simplicial Complexes, Proceedings from the 1994 International Conference on Auditory Display, Santa Fe Institute (1995).

    Google Scholar 

  4. G. Buck and J. Orloff, Computing Canonical Conformations for Knots, Top. Appl. 51 (1993), 246–253.

    MathSciNet  Google Scholar 

  5. G. Buck and J. Simon, Knots as Dynamical Systems, Top. Appl. 51 (1993), 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Burde and H. Zieschang, Knots, Walter de Gruyter (1985).

    MATH  Google Scholar 

  7. T. Banchoff, Beyond the Third Dimension: Geometry,Computer Graphics and Higher Dimensions,Scientific American Library (1990).

    Google Scholar 

  8. David C. Banks, Interactive Manipulation and Display of Surfaces in Four Dimensions, Symposium on Interactive 3D Graphics. Association for Computing Machinery (1992).

    Google Scholar 

  9. K. A. Brakke, The Surface Evolver Manual, Report GC55, The Geometry Center (1993).

    Google Scholar 

  10. K. A. Brakke, The Surface Evolver, Experimental Math. 1 (1992), 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. A. Brakke, The Surface Evolver, Available via anonymous ftp from geom.umn.edu.

    Google Scholar 

  12. R. H. Crowell and R. H. Fox, Introduction to knot theory, Grad. Text Math. No. 57, Springer-Verlag (1977).

    Book  MATH  Google Scholar 

  13. A. J. Hanson and R. A. Cross, Interactive Visualization Methods for Four Dimensions, Proceedings of IEEE Visualization ‘93 (1993), 196–203.

    Google Scholar 

  14. C. Cruz-Neira, D. J. Sandin, and T. A. Defanti, Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE, Computer Graphics (Proceedings of SIGGRAPH ‘83), ACM SIG-GRAPH (1993), 135–142.

    Google Scholar 

  15. C. Cruz-Neira, D. J. Sandin, T. A. Defanti, R. V. Kenyon, and J. C. Hart, The CAVE: Audio Visual Experience Automatic Virtual Environment, Communications of the ACM, 35:6 (1992), 65–72.

    Article  Google Scholar 

  16. M. H. Freedman, Zheng-Xu He, and Zhenghan Wang, On the “energy” of Knots and Unknots, Ann. Math. 139 (1994), 1–50.

    Article  MATH  Google Scholar 

  17. S. Fukuhara, Energy of a Knot,in: A Fete of Topology (eds.: Matsumoto, Mizutani, Morita), Academic Press (1988).

    Google Scholar 

  18. M. H. Freedman and F. Luo, Equivariant isotopy of unknots to round circles,Top. and its Appl. 64 (1995), 59–74.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. K. Francis, A Topological Picturebook, Springer Verlag (1987).

    MATH  Google Scholar 

  20. G. Francis, C. Hartman, G. Chappell, U. Axen, P. Mccreary, and A. Arias Post-Euclidean Walkabout VROOM (Virtual Reality Room), SIGGRAPH’94 (1994)

    Google Scholar 

  21. Geomview, Software, Geometry Center, Minneapolis, Minn. Available via anonymous ftp from geom.umn.edu.

    Google Scholar 

  22. G. K. Francis et. al, LATERNA matheMAGICA, Virtual Environments and Distributed Computing at SC’95, ACM/IEEE (1995) 45.

    Google Scholar 

  23. R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics, Prentice Hall (1961), 120–167.

    Google Scholar 

  24. P. Fu, H. Edelsbrunner, U. Axen, R. Bargar, and I. Choi, Stepping into Alpha Shapes, VROOM (Virtual Reality Room) Presentation at SIGGRAPH ‘84, Orlando, Florida (1994).

    Google Scholar 

  25. R. Gompf and K. Miyazaki, Some well-disguised ribbon knots, Top. and its Appl. 64 (1995), 117–131.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. A. Hillman and A. Kawauchi, Unknotting Orientable Surfaces in the 4-sphere, J. Knot Theory and its Ram. 4 (1955), 213–224.

    Article  MathSciNet  Google Scholar 

  27. A. J. Hanson, knot 4 Videotape SIGGRAPH 93, Published in Siggraph Video Review 93, (1993) Scene 1.

    MathSciNet  Google Scholar 

  28. A. J. Hanson, Mesh View 4D, A 4d surface viewer for meshes for SGI machines, available via ftp from the Geometry Center (1994).

    Google Scholar 

  29. J. A. Hillman, 2-Knots and their Groups, Lecture Series No. 5, Australian Mathematical Soc., Cambridge University Press (1989).

    MATH  Google Scholar 

  30. A. J. Hanson and P. A. Heng, Illuminating the Fourth Dimension, IEEE Computer Graphics and Applications 12:4 (1992), 54–62.

    Article  Google Scholar 

  31. A. J. Hanson, T. Munzner, and G. K. Francis, Interactive Methods for Visualizable Geometry,IEEE Computer 27:7 (1994), 73–83.

    Article  Google Scholar 

  32. R. B. Kusner and J. M. Sullivan, Möbius Energies for Knots and Links, Surfaces and Submanifolds, Geometric Topology: The Proceedings of the Georgia International Topology Conference, Ed. W. Kazez, International Press (1996), 603–637.

    Google Scholar 

  33. L. H. Kauffman, Formal Knot Theory, Mathematical Notes 30, Princeton University Press (1983).

    MATH  Google Scholar 

  34. L. H. Kauffman, Knots and Physics World Scientific (1991).

    Google Scholar 

  35. C. Livingston, Knot Theory, Carus Math. Monographs, A.M.S. (1993).

    Google Scholar 

  36. S. J. Jr. Lomonoco, Five dimensional knot theory, Low Dimensional Topology, A.M.S. Contemp. Math 20 (1983).

    Google Scholar 

  37. Jun O’Hara, Family of energy functionals of knots, Topology and its Appl. 48 (1992), 147–161.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jun O’Hara, Energy Functionals of Knots, Topology-Hawaii, (ed. K. H. Doverman), World Scientific (1992), 201–214.

    Google Scholar 

  39. M. Phillips, S. Levy, and T. Munzner, Geomview - An Interactive Geometry Viewer,Notices AMS, October (1993).

    Google Scholar 

  40. K. Reidemeister, Knotentheorie Ergebn. Math. Grenzgeb., Bd. 1, Springer Verlag (1932).

    Google Scholar 

  41. D. Roseman and T. Price, Some examples of projective planes and two-spheres in 4-space, Proceedings of Georgia Summer Institute of Topology (1977).

    Google Scholar 

  42. D. Roseman, Projection of knots, Fund. Math. 89 (1974), 99–110.

    MathSciNet  Google Scholar 

  43. D. Roseman, Woven knots are spun knots, Osaka J. Math. 11 (1974), 307–312.

    MathSciNet  MATH  Google Scholar 

  44. D. Roseman, The spun square knot is the spun granny knot,Bull. Soc. Math. Mex. 20 (1975), 49–55.

    MathSciNet  MATH  Google Scholar 

  45. D. Roseman, Spinning knots about submanifolds; spinning knots about projections of knots, Topology and its Applications. 31 (1989), 225–241.

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Roseman, Design of a Mathematicians’ Drawing Program, in: Computer Graphics Using Object-Oriented Programming, (Eds. S. Cunningham, J. Brown, N. Craghill and M. Fong), John Wiley & Sons (1992), 279–296.

    Google Scholar 

  47. D. Roseman, Projections of Codimension Two Embeddings (Preprint).

    Google Scholar 

  48. D. Roseman, Reidemeister-type Moves for Surfaces in Four Dimensional Space (Preprint).

    Google Scholar 

  49. D. Roseman, Motions of Flexible Objects, in: Modern Geometric Computing for Visualization (Eds. T. L. Kunii and Y. Shinagawa), Springer-Verlag (1992), 91–120.

    Chapter  Google Scholar 

  50. D. Roseman (With Daeron Mayer), Viewing Knotted Spheres in 4-space, Video (8 min.), Produced at the Geometry Center (June 1992).

    Google Scholar 

  51. D. Roseman (With D. Mayer and O. Holt), Twisting and Turning in 4 Dimensions, Video (19 min.), Produced at the Geometry Center (August 1993), Distributed by Great Media Co., Nicasio CA.

    Google Scholar 

  52. D. Roseman, Unraveling in 4 Dimensions, Video (18 min.), Produced at the Geometry Center (July 1994), Distributed by Great Media Co., Nicasio CA.

    Google Scholar 

  53. D. Roseman, Wiener’s thought on the computer as an aid in visualizing higher-dimensional forms (Preprint), Submitted to AMS series Proceedings of Symposia in Applied Mathematics.

    Google Scholar 

  54. S. Suzuki, Knotting Problems of 2-spheres in the 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), 241–371.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roseman, D. (1997). What Should a Surface in 4-Space Look Like?. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59195-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59195-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63891-6

  • Online ISBN: 978-3-642-59195-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics