Skip to main content

Fast Line Integral Convolution for Arbitrary Surfaces in 3D

  • Chapter
Book cover Visualization and Mathematics

Summary

We describe an extension of the line integral convolution method (LIC) for imaging of vector fields on arbitrary surfaces in 3D space. Previous approaches were limited to curvilinear surfaces, i.e. surfaces which can be parametrized globally using 2D-coordinates. By contrast our method also handles the case of general, possibly multiply connected surfaces. The method works by tesselating a given surface with triangles. For each triangle local euclidean coordinates are defined and a local LIC texture is computed. No scaling or distortion is involved when mapping the texture onto the surface. The characteristic length of the texture remains constant.

In order to exploit the texture hardware of modern graphics computers we have developed a tiling strategy for arranging a large number of triangular texture pieces within a single rectangular texture image. In this way texture memory is utilized optimally and even large textured surfaces can be explored interactively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Adelson-Velskii and Y. Landis, An algorithm for the organization of information, Soviet Math. 3 (1962), 1259–1263.

    Google Scholar 

  2. H. Battke, Entwicklung texturbasierter Methoden zur Vektorfeldvisualisierung (in German), Master’s thesis, Konrad-Zuse-Zentrum Berlin and Humboldt-Universität zu Berlin, Fachbereich Informatik, 1996.

    Google Scholar 

  3. B. Cabral and L. C. Leedom, Imaging vector fields using line integral convolution, Computer Graphics (SIGGRAPH ‘83 Proc.), 27 (1993), 263–272.

    Google Scholar 

  4. L. K. Forssell, Visualizing flow over curvilinear grid surfaces using line integral convolution, Visualization ‘84, 1994, 240–247.

    Google Scholar 

  5. A. Globus, C. Levit, and T. Lasinski, A tool for visualizing the topology of three-dimensional vector fields, Visualization ‘81, 1991, 33–40.

    Google Scholar 

  6. A. J. S. Hin and F. H. Post, Visualization of turbulent flow with particles, Visualization ‘83, 1993, 46–52.

    Google Scholar 

  7. J. P. M. Hultquist, Constructing stream surfaces in steady 3d vector fields, Visualization ‘81, 1992, 171–177.

    Google Scholar 

  8. W. C. de Leeuw and J. J. van Wijk, Enhanced spot noise for vector field visualization, Visualization ‘85, 1995, 233–239.

    Google Scholar 

  9. N. Max, R. Crawfis, and C. Grant, Visualizing 3d velocity fields near contour surfaces, Visualization ‘84, 1994, 248–255.

    Google Scholar 

  10. K. Perlin, An image synthesizer, Computer Graphics 19:3 (1985), 287–296.

    Article  Google Scholar 

  11. F. P. Preparata and M. I. Shamos, Computational geometry, an introduction, Springer Verlag, New York, 1985.

    Book  Google Scholar 

  12. D. Stalling and H.-C. Hege, Fast and resolution independent line integral convolution, SIGGRAPH 95 Conference Proceedings, 1995, 249–256.

    Google Scholar 

  13. G. Ward, A recursive implementation of the perlin noise function, Graphics Gems 2 (J. Arvo, ed.), Academic Press Inc., 1991, 396–401.

    Google Scholar 

  14. J. J. van Wijk, Spot noise, Computer Graphics 25:4 (1991), 309–318.

    Article  Google Scholar 

  15. J. J. van Wijk and W. C. de Leeuw, A probe for local flow field visualization, Visualization ‘83, 1993, 39–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Battke, H., Stalling, D., Hege, HC. (1997). Fast Line Integral Convolution for Arbitrary Surfaces in 3D. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59195-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59195-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63891-6

  • Online ISBN: 978-3-642-59195-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics