Skip to main content

The Effective Lagrangian for QCD

  • Chapter

Part of the book series: Texts and Monographs in Physics ((TMP))

Abstract

In previous chapters, we have studied the formal development of the effective Lagrangian formalism. In Chap. 3 we have seen how to obtain the non-linear sigma model (NLSM) Lagrangian. This is the lowest order term in the derivative expansion that describes the dynamics of the Nambu-Goldstone Bosons (NGB), which are the low-energy excitations of the vacuum in any theory with an spontaneously broken global symmetry. In addition, in Chap. 4 we have studied the WZW effective action, which correctly reproduces the anomalies whenever they are present in the underlying fermionic theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Weinberg, Phys. Rev. Lett. 17 (1966) 616; Physica A96 (1979) 327

    Article  ADS  Google Scholar 

  2. S. Weinberg, Phys. Rev. D9 (1974) 3357

    ADS  Google Scholar 

  3. R, Dashen and M. Weinstein, Phys. Rev. 183 (1969) 1261; S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 (1969) 2239; CG. Callan, S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 (1969) 2247

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Gasser and H. Leutwyler, Ann. Phys. (N. Y) 158 (1984) 142

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465

    Article  ADS  Google Scholar 

  6. J.D. Bjorken, Phys. Rev. 179 (1969) 1547

    Article  ADS  Google Scholar 

  7. S. Coleman and D.J. Gross, Phys. Rev. Lett. 31 (1973) 851; A. Zee, Phys. Rev. D8 (1973) 4038

    Article  ADS  Google Scholar 

  8. S. Weinberg, Phys. Rev. Lett. 31 (1973) 494

    Article  ADS  Google Scholar 

  9. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47 (1973) 365

    Article  ADS  Google Scholar 

  10. D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; Phys. Rev. D8 (1973) 3633

    Article  ADS  Google Scholar 

  11. H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346; Phys. Rev. 14C (1974) 274

    Article  ADS  Google Scholar 

  12. R.D. Peccei and J. Sola, Nucl. Phys. B281 (1987) 1;C.A. Dominguez and J. Sola, Z. Phys. C40 (1988) 63

    Article  ADS  Google Scholar 

  13. F.E. Low, Phys. Rev. 96 (1954) 1428

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Gell-Mann and M.L. Goldberger, Phys. Rev. 96 (1954) 1433

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Gell-Mann, R.J. Oakes and B. Renner, Phys. Rev. 175 (1968) 2195

    Article  ADS  Google Scholar 

  16. M. Gell-Mann, Caltech Report CTSL-20 (1961); S. Okubo, Prog. Theor. Phys. 27 (1962) 949

    Google Scholar 

  17. A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189

    Article  ADS  Google Scholar 

  18. H. Georgi, Weak interactions and Modern Particle Physics, Ben-jamin/Cummings, Reading, MA, 1984

    Google Scholar 

  19. H. Leutwyler, Ann. Phys 235 (1994) 165–203

    Article  MathSciNet  ADS  Google Scholar 

  20. Particle Data Group (R.M. Barnett et al), Phys. Rev. D54 (1996)

    Google Scholar 

  21. J.F. Donoghue, B.R. Holstein and Y.-C. R. Lin, Phys. Rev. Lett. 55 (1985)2766; Erratum 61 (1988) 1527

    Article  ADS  Google Scholar 

  22. G. Hooft, Nucl. Phys. B72 (1974) 461; E. Witten, Nucl. Phys. B160 (1979) 57 S. Coleman, in Aspects of symmetry, Cambridge University Press, 1985

    ADS  Google Scholar 

  23. C. Riggenbach, J. Gasser, J.F. Donoghue and B.R. Holstein, Phys. Rev. D43 (1991) 127

    ADS  Google Scholar 

  24. J. Gasser and H. Leutwyler, Phys. Lett. B125 (1983) 321; Phys. Lett. B125 (1983) 325

    Article  ADS  Google Scholar 

  25. S.R. Amendolia et al, Nucl. Phys. B277 (1986) 168

    Article  ADS  Google Scholar 

  26. G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321 (1989) 311

    Article  ADS  Google Scholar 

  27. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B223 (1989) 425

    Article  ADS  Google Scholar 

  28. J.F. Donoghue, C. Ramirez and G. Valencia, Phys. Rev. D39 (1989) 1947

    ADS  Google Scholar 

  29. J.F. Donoghue and B.R. Holstein, Phys. Rev. D40 (1989) 2378

    ADS  Google Scholar 

  30. A. Andrianov and L. Bonora, Nucl. Phys. B233 (1984) 232 A.A. Andrianov, Phys. Lett B157 (1985) 425

    Article  ADS  Google Scholar 

  31. D. Espriu, E. de Rafael and J. Taron, Nucl. Phys. B345 (1990) 22–56; Erratum B355 (1991) 278

    Article  ADS  Google Scholar 

  32. N.I. Karchev and A.A. Slavnov, Theor. Mat. Phys. 65 (1985) 192

    Google Scholar 

  33. J. Bijnens, Nucl. Phys. B367 (1991) 709

    Article  MathSciNet  ADS  Google Scholar 

  34. A.E.M. Van de Ven, Nucl. Phys. B250 (1985) 593 R.D. Ball, Phys. Rept 182 (1989) 1

    ADS  Google Scholar 

  35. R.A. Bertlmann, C.A. Dominguez, M. Loewe, M. Perrottet and E. de Rafael, Z. Phys. C39 (1988) 231

    ADS  Google Scholar 

  36. V. Bernard, N. Kaiser and U.G. Meissner, Nucl. Phys. B364 (1991) 283

    Article  ADS  Google Scholar 

  37. Tran N. Truong, Phys. Rev. Lett. 61 (1988) 2526; 67 (1991) 2260

    Article  ADS  Google Scholar 

  38. A. Dobado, M.J. Herrero and T.N. Truong, Phys. Lett. B235 (1990) 134

    Article  ADS  Google Scholar 

  39. A. Dobado and J.R. Peláez, Phys. Rev. D47 (1992) 4883

    ADS  Google Scholar 

  40. A. Dobado and J.R. Peláez, Phys. Lett. B286 (1992) 136

    Article  ADS  Google Scholar 

  41. S. Adler, Phys. Rev. B4 (1965) 1022

    Article  Google Scholar 

  42. S.D. Protopopescu et al., Phys. Rev. D7 (1973) 1279

    ADS  Google Scholar 

  43. G. Grayer et al., Nucl. Phys. B75 (1974) 189

    Article  ADS  Google Scholar 

  44. M.J. Losty et al., Nucl. Phys. B69 (1974) 185

    Article  ADS  Google Scholar 

  45. P. Estabrooks and A.D. Martin, Nucl. Phys. B79 (1974) 301

    Article  ADS  Google Scholar 

  46. V. Srinivasan et al., Phys. Rev D12 (1975) 681

    ADS  Google Scholar 

  47. L. Rosselet et al., Phys. Rev. D15 (1977) 574

    ADS  Google Scholar 

  48. W. Hoogland et al., Nucl. Phys B126 (1977) 109

    Article  ADS  Google Scholar 

  49. R. Mercer et al., Nucl. Phys. B32 (1971) 381

    Article  ADS  Google Scholar 

  50. H.H. Bingham et al., Nucl. Phys. B41 (1972) 1

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Linglin et al., Nucl. Phys. B57 (1973) 64

    Article  ADS  Google Scholar 

  52. M.J. Matison et al., Phys. Rev. D9 (1974) 1872

    ADS  Google Scholar 

  53. S.L. Baker et al., Nucl. Phys. B99 (1975) 211

    Article  ADS  Google Scholar 

  54. P. Estabrooks et al, Nucl. Phys. B133 (1978) 490

    Article  ADS  Google Scholar 

  55. J. Bijnens, G. Colangelo and J. Gasser, Nucl. Phys. B427 (1994) 427

    Article  ADS  Google Scholar 

  56. T. Hannah, Phys. Rev. D51 (1995) 103

    ADS  Google Scholar 

  57. J. Bijnens and F. Cornet, Nucl. Phys. B296 (1988) 557

    Article  ADS  Google Scholar 

  58. J.F. Donoghue, B.R. Holstein and Y.C. Lin, Phys. Rev. D37 (1988) 2423

    ADS  Google Scholar 

  59. D. Morgan and M.R. Pennington, Phys. Lett. B192 (1987) 207, Z. Phys. C37 (1988) 431, C48 (1990) 623, Phys. Lett. B272 (1991) 134

    Article  ADS  Google Scholar 

  60. S. Belluci, J. Gasser and M.E. Sainio, Nucl. Phys. 423 (1994) 80

    Article  ADS  Google Scholar 

  61. J.F. Donoghue and B.R. Holstein, Phys. Rev. D48 (1993) 137

    ADS  Google Scholar 

  62. A. Dobado and J.R. Peláez, Z. Phys. C57 (1993) 501

    Google Scholar 

  63. H. Marsiske et al. The Crystall Ball Coll., Phys. Rev. D41 (1990) 3324

    ADS  Google Scholar 

  64. J. Boyer et al., Phys. Rev. D42 (1990) 1350

    ADS  Google Scholar 

  65. M.J. Dugan and M. Golden, Phys. Rev. D48 (1993) 4375

    ADS  Google Scholar 

  66. A. Dobado and J. Morales, Phys. Rev. D52 (1995) 2878; Phys. Lett. B365 (1996) 264

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobado, A., Gómez-Nicola, A., Maroto, A.L., Peláez, J.R. (1997). The Effective Lagrangian for QCD. In: Effective Lagrangians for the Standard Model. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59191-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59191-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63889-3

  • Online ISBN: 978-3-642-59191-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics