Skip to main content

The α-Galactosyl Epitope (Galα1-3Ga1β1-4GIcNAc-R) and the Natural Anti-Gal Antibody

  • Chapter
Molecular Biology and Evolution of Blood Group and MHC Antigens in Primates

Abstract

The carbohydrate structure Galαl-3Galß1-4G1cNAc-R (termed the α-galactosyl epitope) and the natural antibody which interacts specifically with this epitope (termed anti-Gal) display a unique pattern of distribution in primates. The α-galactosyl epitope is abundantly expressed on red cells and nucleated cells of prosimians and New World monkeys as well as on cells of nonprimate mammals. It is absent, however, from Old World monkeys, apes, and humans. In contrast, anti-Gal is produced in large amounts in Old World monkeys, apes, and humans but is absent from New World monkeys, prosimians, and nonprimate mammals. The studies reported on in this chapter: (1) identify the α-galactosyl epitope as the “B-like” antigen reported by Landsteiner 70 years ago to be present on New World monkey red cells; (2) describe the reciprocity in the distribution of the α-galactosyl epitope and of anti-Gal in primates; (3) discuss the molecular aspects of the evolutionary event that led to suppression of α-galactosyl epitope expression and the appearance of anti-Gal in ancestral Old World primates (i.e., Old World monkeys and apes); and (4) discuss the pathophysiologic outcomes of the interaction between the α-galactosyl epitope and anti-Gal in the areas of red cell aging, xenotransplantation and autoimmunity. Finally, this chapter describes the potential exploitation of anti-Gal and the α-galactosyl epitope for the augmentation of viral and tumor vaccine immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida IC, Milani SR, Gorin AJ, Travassos LR. Complement mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-α-galactosyl antibodies. J Immunol 146: 2394–2401, 1991

    PubMed  CAS  Google Scholar 

  • Almedia IC, Ferguson MAJ, Schenkman S, Travassos LR. Lytic anti-a-galactosyl antibodied from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucine-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J 304: 793–802, 1994

    Google Scholar 

  • Auchincloss H. Xenogeneic transplantation. Transplantation 45: 1–20, 1988

    Article  Google Scholar 

  • Avila JL, Rojas M, Galili U. Immunogenic Galα1→3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol 142: 2828–2834, 1989

    PubMed  CAS  Google Scholar 

  • Basu M, Basu S. Enzymatic synthesis of blood group related pentaglycosyl ceramide by an α-galactosyltransferase. J Biol Chem 248: 1700–1706, 1973

    PubMed  CAS  Google Scholar 

  • Betteridge A, Watkins WM. Two α-3-D galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities. Eur J Biochem 132: 29–35, 1983

    Article  PubMed  CAS  Google Scholar 

  • Blake DD, Goldstein IJ. An α-D-galactosyltransferase in Ehrlich ascites tumor cells: biosynthesis and characterization of a trisaccharide (α-D-galacto(1–3)-N-acetyllactosamine). J Biol Chem 256: 5387–5393, 1981

    PubMed  CAS  Google Scholar 

  • Blanken WM, van den Eijnden DH. Biosynthesis of terminal Galα1–3Ga1β1–4G1cNAc-R oligosaccharide sequence on glycoconjugates: purification and acceptor specificity of a UDP-Gal: N-acetyllactosamine α1,3galactosyltransferase. J Biol Chem 260: 12972–12934, 1985

    Google Scholar 

  • Celis E, Chang TW. Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science 224: 297–299, 1984

    Article  PubMed  CAS  Google Scholar 

  • Collins BH, Cotterell AH, McCurry KR, Alvarado CG, Magee JC, Parker W, Platt JL. Cardiac xenografts between primate species provide evidence for the importance of the a-galactosyl determinant in hyperacute rejection. J Immunol 154: 5500–5510, 1995

    PubMed  CAS  Google Scholar 

  • Couto AS, Conclaves MF, Colli W, deLederkremer RM. The N-linked carbohydrate chain of the 85-kilodalton glycoprotein from Trypanosoma cruzi trypomastigotes contains sialyl, fucosyl and galactosyl (α1–3) galactose units. Mol Biochem Parasitol 39: 101–109, 1990

    Article  PubMed  CAS  Google Scholar 

  • Davin JC, Malaise M, Foidart JM, Mahieu P. Anti-α-galactosyl antibodies and immune complexes in children with Henoch-Schönlein purpura or IgA nephropathy. Kidney Int 31: 1132–1139, 1987

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt AE, Goldstein IJ. Isolation and characterization of α-galactosyl containing glycopeptides from Ehrlich ascites tumor cells. Biochemistry 22: 5290–5303, 1983

    Article  PubMed  CAS  Google Scholar 

  • Egge H, Kordowicz M, Peter-Katalinic J, Hanfland P. Immunochemistry of I/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. J Biol Chem 260: 4927–4935, 1985

    PubMed  CAS  Google Scholar 

  • Eisenberg JF. The mammalian radiation: an analysis of trends in evolution adaptation and behavior. University of Chicago Press, Chicago, 1981

    Google Scholar 

  • Eto T, Iichikawa Y, Nishimura K, Ando S, Yamakawa T. Chemistry of lipids of the posthemolytic residue or stroma of erythrocytes. XVI. Occurance of ceramide pentasaccharide in the membrane of erythrocytes and reticulocytes in rabbit. J Biochem (Tokyo) 64: 205–213, 1968

    CAS  Google Scholar 

  • Gabrielli A, Candel M, Ricciatti AM, Caniglia ML, Wieslander J. Antibodies to mouse laminin in patients with systemic sclerosis (scleroderma) recognize galactose (α1,3)-galactose epitopes. Clin Exp Immunol 86: 367–373, 1991

    Article  PubMed  CAS  Google Scholar 

  • Galili U. Abnormal expression of α-galactosyl epitopes in man: a trigger for autoimmune processes? Lancet ii: 358–361, 1989

    Google Scholar 

  • Galili U. The natural anti-Gal antibody the B-like antigen and human red cell aging. Blood Cells 14: 205–220, 1988a

    CAS  Google Scholar 

  • Galili U. The two antibody specificities within human anti-blood group B antibodies. Transfusion Med Rev 2: 112–121, 1988b

    Article  CAS  Google Scholar 

  • Galili U. Evolution and pathophysiology of the human natural anti-Gal antibody. Springer Semin Immunopathol 15: 155–171, 1993a

    Article  CAS  Google Scholar 

  • Galili U. Interaction of the natural anti-Gal antibody with a-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14: 480–482, 1993b

    Article  CAS  Google Scholar 

  • Galili U, Anaraki F. α-Galactosyl (Galαs-3Galß1–4G1cNAc-R) epitopes on human cells: synthesis of the epitope on human red cells by recombinant primate α1,3-galactosyltransferase expressed in E. coli. Glycobiology 5: 783–789, 1995

    Article  Google Scholar 

  • Galili U, Andrews P. Suppression of α-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: a major evolutionary event in ancestral Old World primates. J Hum Evol 29: 433–442, 1995

    Article  Google Scholar 

  • Galili U, Swanson K. Gene sequences suggest inactivation of α1,3 galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 88: 7401–7404, 1991

    Article  PubMed  CAS  Google Scholar 

  • Galili U, Korkesh A, Kahane I, Rachmilewitz EA. Demonstration of a natural anti-galactosyl IgG antibody on thalassemic red blood cells. Blood 61: 1258–1264, 1983

    PubMed  CAS  Google Scholar 

  • Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-α-galactosyl specificity. J Exp Med 160: 1519–1531, 1984

    Article  PubMed  CAS  Google Scholar 

  • Galili U, Macher BA, Buehler J, Shohet SB. Human natural anti-α-galactosyl IgG. II. The specific recognition of a(1->3)-linked galactose residues. J Exp Med 162: 573–582, 1985

    Article  PubMed  CAS  Google Scholar 

  • Galili U, Clark MR, Shohet SB. Excessive binding of the natural anti-a-galactosyl IgG to sickle red cells may contribute to extravascular cell destruction. J Clin Invest 77: 2733, 1986a

    Article  Google Scholar 

  • Galili U, Flechner I, Kniszinski A, Danon D, Rachmilewitz EA. The natural anti-α-galactosyl IgG on human normal senescent red blood cells. Br J Haematol 62: 317–324, 1986b

    Article  CAS  Google Scholar 

  • Galili U, Buehler J, Shohet SB, Macher BA. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med 165: 693–704, 1987a

    Article  CAS  Google Scholar 

  • Galili U, Clark MR, Shohet SB, Buehler J, Macher BA. Evolutionary relationship between the anti-Gal antibody and the Galas-3Gal epitope in primates. Proc Nail Acad Sci USA 84: 1369–1373, 1987b

    Article  CAS  Google Scholar 

  • Galili U, Basbaum CB, Shohet SB, Buehler J, Macher BA. Identification of erythrocyte Galα1–3Gal glycosphingolipids with a mouse monoclonal antibody. J Biol Chem 262: 4683–4687, 1987c

    CAS  Google Scholar 

  • Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffis JM. Interaction between human natural anti-a-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 56: 1730–1737, 1988a

    CAS  Google Scholar 

  • Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA. Man apes and Old World monkeys differ from other mammals in the expression of a-galactosyl epitopes on nucleated cells. J Biol Chem 263: 17755–17762, 1988b

    CAS  Google Scholar 

  • Galili U, Anaraki F, Thall A, Hill-Black C, Radic M. One percent of circulating B lympho-cytes are capable of producing the natural anti-Gal antibody. Blood 82: 2485–2493, 1993

    PubMed  CAS  Google Scholar 

  • Galili U, Gregory CR, Morris RE. Contribution of anti-Gal to primate and human IgG bind-ing to porcine endothelial cells. Transplantation 60: 210–213, 1995a

    CAS  Google Scholar 

  • Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 59: 1549–1556, 1995b

    CAS  Google Scholar 

  • Galili U, Repik PM, Anaraki F, Mozdzanowska K, Washko G, Gerhard W. Enchancement of antigen presentation of influenza virus hemagglutinin by the natural anti-Gal antibody. Vaccine 14: 321–328, 1996

    Article  PubMed  CAS  Google Scholar 

  • Gazzinelli R, Galvao LMC, Dias JCP, Gazzinelli G, Brener Z. Anti-laminin specific antibodies in acute Chagas disease. Transact R Soc Trop Med Hyg 82: 574–576, 1988

    Article  CAS  Google Scholar 

  • Geyer R, Geyer H, Strim S, Hunsmann G, Schneider J, Dabrowski U, Dabrowski J. Major oligosaccharides in the glycoprotein of Friend murine leukemia virus: structure elucidation by one and two dimensional proton nuclear magnetic resonance and methylation analysis. Biochemistry 23: 5628–5634, 1984

    Article  PubMed  CAS  Google Scholar 

  • Good AH, Cooper DCK, Malcolm AJ, Ippolito RM, Koren E, Neethling FA, Ye Y, Zuhdi N, Lamontage LR. Identification of carbohydrate structures which bind human anti-porcine antibodies: implication for discordant xenografting in man. Transplant Proc 24559–562, 1992

    Google Scholar 

  • Gosselin EJ, Wardwell K, Gosselin DR, Alter N, Fisher JL, Guyre PM. Enhanced antigen presentation using human Fey receptor (monocyte/macrophage) specific immunogens. J Immunol 149: 3477–3481, 1992

    PubMed  CAS  Google Scholar 

  • Gowda DC, Schultz M, Bredehorst R, Vogel CW. Structure of the major oligosaccharide of cobra venom factor. Mol Immunol 29: 335–344, 1992

    Article  PubMed  CAS  Google Scholar 

  • Gowda DC, Petrella EC, Raj TT, Bredehorst R, Vogel CW. Immunoreactivity and function of oligosaccharides in cobra venom factor. J Immunol 152: 2977–2986, 1994

    PubMed  CAS  Google Scholar 

  • Groth CG, Korgsen O, Tibell A, Tollerman J, Möller E, Bolinder J, Ostman J, Reinholt FP, Hellerstrom C, Andersson A. Transplantation of fetal porcine pancreas to diabetic patients: biochemical and histological evidence for graft survival. Lancet 344: 1402–1404, 1994

    Article  PubMed  CAS  Google Scholar 

  • Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffis JM. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89: 1223, 1992

    Article  PubMed  CAS  Google Scholar 

  • Hamadeh RM, Galili U, Zhou P, Griffis JM. Anti-a-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin Diagn Lab Immunol 2: 125–131, 1995

    PubMed  CAS  Google Scholar 

  • Hendriks SP He P Stults CLM and Macher BA Regulation of the expression of Galαl- 3Gal(31–4G1cNAc glycosphingolipids in kidney. J Biol Chem 256: 17621–17626, 1990

    Google Scholar 

  • Henion TR, Macher BA, Anaraki F, Galili U. Defining the minimal size of catalytically active primate a1,3-galactosyltransferase: structure function studies on the recombinant truncated enzyme. Glycobiology 4: 193–201, 1994

    Article  PubMed  CAS  Google Scholar 

  • Howell CHL, Vesselinova-Jenkins CK, Evans JD, James J. Influenza vaccination andlmortality from bronchopneumonia in the elderly. Lancet i: 381–383, 1975

    Article  Google Scholar 

  • Joziasse DH, Shaper JH, Van den Eijnden DH, Van Tunen AH, Shaper NL. Bovine α1→3galactosyltransferase: isolation and characterization of a cDNA clone Identification of homologous sequences in human genomic DNA. J Biol Chem 264: 14290–14297, 1989

    PubMed  CAS  Google Scholar 

  • Joziasse DH, Shaper JH, Jabs EW, Shaper NL. Characterization of an a1-*3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudo-gene. J Biol Chem 266: 6991–6998, 1991

    PubMed  CAS  Google Scholar 

  • Kay MMB. Mechanism of removal of red cells by macrophages in situ. Proc Natl Acad Sci USA 72: 3521–3525, 1975

    Article  PubMed  CAS  Google Scholar 

  • Kay MMB, Goodman SR, Sorensen K, Whitfield CF, Wong P, Zaki L, Rudolf V. Senescent red cell antigen is immunologically related to band 3. Proc Natl Acad Sci USA 8o: 1631–1636, 1983

    Article  Google Scholar 

  • Kohn RP. Cause of death in very old people. JAMA 247: 2793–2796, 1982

    Article  PubMed  CAS  Google Scholar 

  • Landsteiner K, Philip-Miller C. Serological studies on the blood of the primates. III. Distribution of serological factors related to human isoagglutinogens in the blood of lower monkeys. J Exp Med 42: 863–875, 1925

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A. Identifying strategies for immune intervention. Science 260: 937–944, 1993

    Article  PubMed  CAS  Google Scholar 

  • Larsen RD, Rajan VP, Ruff M, Kukowska-Latallo J, Cummings RD, Lowe JB. Isolation of a cDNA encoding murine UDP galactose: βD-galactosy1–14-N-acetyl-D-glucosaminide α1,3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci USA 86: 8227–8231, 1989

    Article  PubMed  CAS  Google Scholar 

  • Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal13D-Gal(1,4)-D-G1cNAcα(1,3) galactosyltransferase cDNA. J Biol Chem 265: 7055–7062, 1990

    PubMed  CAS  Google Scholar 

  • Leventhal JR, Dalmaso AP, Cromwell JW, Platt JL, Manivel CJ, Bolman RM, Matas AJ. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 55: 857–866, 1993

    Article  PubMed  CAS  Google Scholar 

  • Livingston P. Active specific immunotherapy in the treatment of patients with cancer. Immunol Allerg Clin North Am 11: 401–423, 1991

    Google Scholar 

  • Manca F, Fenoglio D, Li-Pira G, Kunkel A, Celada F. Effect of antigen/antibody ratio on macrophage uptake processing and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 173: 37–48, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nossal GJV. Tolerance and ways to break it. NY Acad Sci 69o: 34–41, 1993

    Article  Google Scholar 

  • Pardoll DM. Cancer vaccines. Immunol Today 14: 310–316, 1993

    Article  PubMed  CAS  Google Scholar 

  • Parker W, Bruno O, Holzkecht ZE, Platt JE. Characterization and affinity isolation of xenoreactive human natural antibodies. J Immunol 153: 3791–3803, 1994

    PubMed  CAS  Google Scholar 

  • Pilbeam D. The decent of hominoids and hominids. Sci Am March 84–95, 1984

    Google Scholar 

  • Platt JL, Bach FH. The barrier to xenotransplantation. Transplantation 52: 937–947, 1991

    Article  PubMed  CAS  Google Scholar 

  • Ravindran S, Satapathy AK, Das MK. Naturally occurring anti-a-galactosyl antibodies in human plasmodium falciparum infection: a possible role for autoantibodies in malaria. Immunol Lett 19: 137–142, 1988

    Article  PubMed  CAS  Google Scholar 

  • Repik PM, Strizki JM, Galili U. Differential host dependent expression of a-galactosyl epitopes on viral glycoproteins: a study of eastern equine encephalitis virus as a model. J Gen Virol 75: 1177–1181, 1994

    Article  PubMed  CAS  Google Scholar 

  • Sandrin M, Vaughan HA, Dabkowski PL, McKenzie IFC. Anti-pig IgM antibodies in human serum react predominantly with Gala1–3Gal epitopes. Proc Natl Acad Sci USA 90: 11391–11395, 1993

    Article  PubMed  CAS  Google Scholar 

  • Sandrin MS, Dabkowski PL, Henning MM, Mouthouris E, McKenzie IFC. Characterization of cDNA clones for porcine a1,3galactosyltransferase The enzyme generating the Gala(1,3)Gal epitope. Xenotransplantation 41: 101–105, 1995

    Google Scholar 

  • Santer UV, DeSantis R, Hard KJ, van Kuik JA, Vliegenthart JFG, Won B, Glick MC. N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur J Biochem 181: 249–260, 1989

    Article  PubMed  CAS  Google Scholar 

  • Satake M, Kawagishi N, Rydberg L, Samuelsson BE, Tibell A, Groth CG, Möller E Limited specificity of xenoantibodies in diabetic patients transplanted with fetal porcine islet cell clusters. Main antibody reactivity against a-linked galactose-containing epitopes. Xenotransplantation 1: 89–101, 1994

    Article  Google Scholar 

  • Sorette MP, Galili U, Clark MR. Comparison of serum anti-band 3 and anti-Gal antibody binding to density separated human red blood cells. Blood 77: 628–636, 1991

    PubMed  CAS  Google Scholar 

  • Spiro RG, Bhoyroo VD. Occurance of a-D-galactosyl residues in the thyroglobulin from several species Localization in the saccharide chains of the complex carbohydrate units. J Biol Chem 259: 9858–9866, 1984

    PubMed  CAS  Google Scholar 

  • Stellner K, Saito H, Hakomori S. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys 133: 464–472, 1973

    Article  Google Scholar 

  • Strahan KM, Gu F, Preece AF, Gustaysson I, Andersson L, Gustafsson K. DNA sequence and chromosome localization of pig α1,3galactosyltransferase. Immunogenetics 41: 101–105, 1995

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Naiki M. Heterophile antibodies to rabbit erythrocytes in human sera and identification of the antigen as a glycolipid. J Biochem (Tokyo) 83: 103–108, 1984

    Google Scholar 

  • Thall A, Galili U. Distribution of Gala1–3Gα1β1–4G1cNAc residues on secreted mammalian glycoproteins (thyroglobulin fibrinogen and immunoglobulin G) as assayed by a sensitive solid-phase radioimmunoassay. Biochemistry 29: 3959–3968, 1990

    Article  PubMed  CAS  Google Scholar 

  • Thall A, Etienne-Decerf J, Winand R, Galili U. The a-galactosyl epitope on mammalian thyroid cells. Acta Endocrinol (Copenh) 124: 692–699, 1991

    CAS  Google Scholar 

  • Thall AD, Maly P, Lowe JB. Oocyte Galα1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 270: 21437–21442, 1995

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Rosenfelder G, Weislander J, Avila JL, Rojas M, Szarfman A, Esser K, Nowack H, Timple R. Circulating antibodies to mouse laminin in Chagas disease American cutaneous Leishmaniasis and normal individuals recognize terminal galactosyl (αl-3) galactose epitopes. J Exp Med 166: 419–432, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tsuji J, Noma S, Suzuki J, Okumura K, Shimizu N. Specificity of human natural antibody to recombinant tissue-type plasminogen activator (t-PA) expressed on mouse C127 cells. Chem Pharm Bull 38: 765–768, 1990

    Article  PubMed  CAS  Google Scholar 

  • Unanue ER, Allen PM. The basis for the immunoregulatory role of macrophages and other accessory cells. Science 236: 551–557, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Anaraki F, Henion TR, Galili U. Variations in activity of the human natural anti-Gal antibody in young and elderly populations. J Gerontol (Med Sci) 50A: M227–33, 1995a

    Article  Google Scholar 

  • Wang L, Radic MZ, Galili U. Human anti-Gal heavy chain genes: preferential use of VH3 and the presence of somatic mutations. J Immunol 155: 1276–1285, 1995b

    CAS  Google Scholar 

  • Weislander J, Mannson O, Kallin E, Gabrielli A, Nowack H, Timpl R. Specificity of human antibodies against Galα1–3Gal carbohydrate epitope and distinction from natural antibodies reacting with Galα1–2Gal or Galα1–4Gal. Glycoconjugate J 7: 85–100, 1990

    Article  Google Scholar 

  • Winand RJ, Anaraki F, Etienne-Decerf J, Galili U. Xenogeneic thyroid-stimulating hormone-like activity of the human natural anti-Gal antibody. Interaction of anti-Gal with porcine thyrocytes and with recombinant human thyroid stimulating hormone receptors expressed on mouse cells. J Immunol 151: 3923–3934, 1993

    PubMed  CAS  Google Scholar 

  • Winand RJ, Winand-Devigne J, Meurisse M, Galili U. Specific stimulation of Graves’ disease thyrocytes by the natural anti-Gal antibody from normal and autologous serum. J Immunol 153: 1386–1395, 1994

    PubMed  CAS  Google Scholar 

  • Wood C, Kabat EA, Murphy LA, Goldstein IJ. Immunochemical studies of the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch Biochem Biophys 198: 1–8, 1979

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galili, U. (1997). The α-Galactosyl Epitope (Galα1-3Ga1β1-4GIcNAc-R) and the Natural Anti-Gal Antibody. In: Blancher, A., Klein, J., Socha, W. (eds) Molecular Biology and Evolution of Blood Group and MHC Antigens in Primates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59086-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59086-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63843-5

  • Online ISBN: 978-3-642-59086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics