Skip to main content

Abstract

Three characteristics define a substance as a blood group antigen. First, the substance is present in the blood, most commonly on the blood cells, but often also in the blood plasma. Substances present exclusively in the plasma and other body fluids are usually not included in the category of blood group antigens. Of the blood cells, the erythrocyte is generally the type locality, the site at which an antigen was originally detected. Although leukocyte and platelet antigens are not excluded from the blood group antigen category, their coverage is usually relegated, both for historical and practical reasons, to separate compendia. Historically, erythrocyte antigens were the first to be described, the existence of leukocyte and platelet antigens was reported much later. The leukocyte antigens — now largely assigned either to the major histocompatibility complex (Mhc) or the cluster of differentiation (CD) series — have become so numerous and their characterization so extensive that justice can be done to them only by separating them from the erythrocyte antigens. Second, to qualify as a blood group antigen, a substance must be capable of eliciting an immune response, usually of the humoral type. Some blood group antigens (e.g., those of the ABO, H, Lewis systems) can probably induce only humoral responses, whereas others (e.g. those of the Rh, MNS, Luteran, Kell, Duffy, Kidd, Diego, and other systems) have at least the potential of also eliciting T lymphocyte-based cellular responses. The prevailing reliance on the humoral response has dictated the use of techniques based almost exclusively on antibody reactions. Serology remains to this day emblematic of blood group antigen studies, although in the future it will probably be replaced either entirely, or at least to a large extent, by molecular biology techniques. Third, the genes encoding blood group antigens are polymorphic so that some individuals of a species possess one form of the antigen and others another. This characteristic is the necessary condition for elicitation of immune response against the antigen which is commonly of the allogeneic type. The blood group antigens are, with few exceptions, alloantigens.

This concluding chapter of the blood group antigen part of this book draws heavily on the information described in the preceding contributions. In the interest of brevity, references have been restricted to a minimum; for complete documentation of the discussed findings, the reader is referred to the relevant chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arce MA, Thompson ES, Wagner S, Coyne KE, Ferdman BA, Lublin DM. Molecular cloning of RhD cDNA derived from a gene present in RhD-positive, but not RhD-negative individuals. Blood 82: 651–655, 1993

    PubMed  CAS  Google Scholar 

  • Bailly P, Hermand P, Callebaut I, Sonneborn HH, Khamlichi S, Mornon JP, Cartron JP. The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proc Natl Acad Sci USA 91: 5306–5310, 1994

    Article  PubMed  CAS  Google Scholar 

  • Blancher A, Socha WW. The ABO Hh and Lewis blood group in man and nonhuman primates. In: Blancher A, Klein J, Socha WW (eds) Molecular biology and evolution of blood group and MHC antigens in primates. Springer, Berlin Heidelberg New York, pp. 30–92, 1997a

    Chapter  Google Scholar 

  • Blancher A, Socha WW. The Rhesus system and its counterparts in nonhuman primates. In: Blancher A, Klein J, Socha WW (eds) Molecular biology and evolution of blood group and MHC antigens in primates. Springer, Berlin Heidelberg New York, pp. 147–219, 1997b

    Chapter  Google Scholar 

  • Brandon EP, Idzerda RL, McKnight GS. Targetting the mouse genome: a compendium of knockouts. Curr Biol 5: 569–694; 627–634; 873–881, 1995

    Article  Google Scholar 

  • Cherif-Zahar B, Bloy C, Van Kim C, Blanchard D, Bailly P, Hermand P, Salmon C, Cartron JP, Colin Y. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci USA 87: 6243–6247, 1990

    Article  PubMed  CAS  Google Scholar 

  • Daniels GL, Moulds JJ, Anstee DJ, Bird GWG, Brodheim E, Cartron JP, Dahr W, Engelfriet CP, Issitt PD, Jorgensen J, Kornstad L, Lewis M, Levene C, Lubenko A, Mallory D, Morel P, Nordhagen R, Okubo Y, Reid M, Rouger P, Salmon C, Seidl S, Sistonen P, Wendel S, Woodfield G, Zelinski T. ISBT working party on terminology for red cell surface antigens. Sao Paulo report. Vox Sang 65: 77–80, 1993

    Article  PubMed  CAS  Google Scholar 

  • Feldman MW, Nabholz M, Bodmer WF. Evolution of the Rh polymorphism: a model for the interaction of incompatibility, reproductive compensation, and heterozygote advantage. Am J Hum Genet 21: 171–193, 1969

    PubMed  CAS  Google Scholar 

  • Frattali AF, Spitalnik SL. Blood group antigens as receptors for pathogens. In: Blancher A, Klein J, Socha WW (eds) Molecular biology and evolution of blood group and MHC antigens in primates. Springer, Berlin Heidelberg New York, pp. 268–304, 1997

    Google Scholar 

  • Goelz SE, Hession C, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R.: A gene that directs the expression of an ELAM-1 ligand. Cell 63: 1349–1356, 1990

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS. Mutation and the Rhesus reaction. Nature 153: 106, 1944

    Article  Google Scholar 

  • Hochgeschwender U, Brennan MB. Rendundant genes? Nat Genet 8: 219–220, 1994

    Article  PubMed  CAS  Google Scholar 

  • Kajii E, Umenishi F, Iwamoto S, Ikemoto S. Isolation of a new cDNA clone encoding an Rh polypeptide associated with the Rh blood group system. Hum Genet 91: 157–162, 1993

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, O’hUigin C, Klein J. Evolution of primate C4 and CYP21 genes. In: Klein J, Klein D (eds) Molecular evolution of the major histocompatibility complex. Springer, Berlin Heidelberg New York, pp 357–381, 1991

    Chapter  Google Scholar 

  • Kelly RJ, Roquier S, Giorgi D, Lennon GG, Lowe JB. Sequence and expression of a candidate for the human Secretor blood group α(1,2) fucosyltransferase gene (FUT 2 ); homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 270: 4640–4649, 1995

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120, 1980

    Article  PubMed  CAS  Google Scholar 

  • Klein J. Generation of diversity at MHC loci: Implications for T-cell receptor repertoires. In: Fougereau M, Dausset J (eds) Immunology, vol 80. Academic, London, pp 239–253, 1980

    Google Scholar 

  • Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19: 155–162, 1987

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Satta Y, O’hUigin C, Takahata N. The molecular descent of the major histocompatibility complex. Annu Rev Immunol 11: 269–295, 1993

    Article  PubMed  CAS  Google Scholar 

  • Kominato Y, McNeill PD, Yamomoto M, Russell M, Hakomori S, Yamomoto F. Animal histo-blood group ABO genes. Biochem Biophys Res Comm 189: 154–164, 1992

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4) fucosyltransferase. Genes Dev 4: 1288–1303, 1990

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetic analysis version i.o. Pennsylvania State University, University Park, PA, 1993

    Google Scholar 

  • Larsen RD, Ernst LK, Nair RP, Lowe JB. Molecular cloning sequence and expression of a human GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci USA 87: 6674–6678, 1990

    Article  PubMed  CAS  Google Scholar 

  • Le Van Kim C, Cherif-Zahar B, Raynal V, Mouro I, Lopez M, Cartron JP, Colin Y. Multiple Rh mRNAs isoforms are produced by alternative splicing. Blood 8o: 1074–1078, 1992

    Google Scholar 

  • Le Van Kim C, Mouro I, Cherif-Zahar B, Raynal V, Cherrier C, Cartron JP, Colin Y. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA 89: 10925–10929, 1992

    Article  Google Scholar 

  • Levin BR. The effect of reproductive compensation on the long term maintenance of the Rh-polymorphism: the Rh crossroad revisited. Am J Hum Genet 19: 288–302, 1967

    PubMed  CAS  Google Scholar 

  • Li CC. Is the Rh facing a crossroad? A critique of the compensation effect. Am Nat 87: 257–261, 1953

    Article  Google Scholar 

  • Martinko JM, Vincek V, Klein D, Klein J. Primate ABO glycosyltransferases: evidence for trans-species evolution. Immunogenetics 37: 274–278, 1993

    Article  PubMed  CAS  Google Scholar 

  • Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB. Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis determinant. J Biol Chem 269: 16789–16794, 1994

    PubMed  CAS  Google Scholar 

  • Nei M. Molecular evolutionary genetics. Columbia University Press, New York, 1987

    Google Scholar 

  • Nei M, Li W-H, Tajima F, Narain P. Polymorphism and evolution of the Rh blood groups. Jpn J Hum Genet 26: 263–278, 1981

    Article  CAS  Google Scholar 

  • Parsons SF, Mallinson G, Holmes CH, Houlihan JM, Simpson KL, Mawby WJ, Spurr NK, Warne D, Barclay AN, Anstee DJ. The Lutheran blood group glycoprotein, another member of the immunoglobulin superfamily, is widely expressed in human tissues and is developmentally regulated in human liver. Proc Natl Acad Sci USA 92: 5496–5500, 1995

    Article  PubMed  CAS  Google Scholar 

  • Paulson JC, Colley KJ. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264: 17615–17618, 1989

    PubMed  CAS  Google Scholar 

  • Piau JP, Labarriere N, Dabouis G, Denis MG. Evidence for two distinct α(1,2)-fucosyltransferase genes differentially expressed throughout the rat colon. Biochem J 300: 623–626, 1994

    PubMed  CAS  Google Scholar 

  • Race RR. Some recent observations on the inheritance of blood groups. Br Med Bull 2: 160–165, 1944

    Google Scholar 

  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425, 1987

    PubMed  CAS  Google Scholar 

  • Salvignol I, Blancher A, Calvas P, Clayton J, Socha WW, Colin Y, Ruffle J. Molecular genetics of chimpanzee Rh-related genes: their relationship with the R-C-E-F blood group system, the chimpanzee counterpart of the human rhesus system. Biochem Genet 32: 201–221, 1994

    Article  PubMed  CAS  Google Scholar 

  • Schenkel-Brunner H. Human blood groups. Chemical and biochemical basis of antigen specificity. Springer, Vienna New York, 1995

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680, 1994

    Article  PubMed  CAS  Google Scholar 

  • Weston BW, Nair RP, Larsen RD, Lowe JB. Isolation of a novel human α(1,3) fucosyltransferase gene and molecular comparison to the human Lewis blood groups α(1,3/1,4) fucosyltransferase gene. J Biol Chem 267: 4152–4160, 1992a

    CAS  Google Scholar 

  • Weston BW, Smith PL, Kelly RJ, Lowe JB. Molecular cloning of a fourth member of a human α(1,3) fucosyltransferase gene family: multiple homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes. J Biol Chem 267: 24574–24584, 1992b

    Google Scholar 

  • Yamamoto FI. Molecular genetics of the ABO histo-blood group system. Vox Sang 69: 1–7, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, J., O’hUigin, C., Blancher, A. (1997). Evolution of Blood Group Antigen Polymorphism. In: Blancher, A., Klein, J., Socha, W. (eds) Molecular Biology and Evolution of Blood Group and MHC Antigens in Primates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59086-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59086-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63843-5

  • Online ISBN: 978-3-642-59086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics